

US009433611B2

(12) United States Patent

Dasgupta et al.

(54) OXAZOLE AND THIAZOLE COMPOUNDS AS β-CATENIN MODULATORS AND USES THEREOF

(75) Inventors: Ramanuj Dasgupta, New York, NY (US); Foster Gonsalves, Brooklyn, NY

(US)

(73) Assignee: New York University, New York, NY

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 LLS C 154(b) by 750 days

U.S.C. 154(b) by 750 days.

(21) Appl. No.: 13/595,336

(22) Filed: Aug. 27, 2012

(65) Prior Publication Data

US 2013/0109675 A1 May 2, 2013

Related U.S. Application Data

- (63) Continuation of application No. 12/322,070, filed on Jan. 28, 2009, now Pat. No. 8,252,823.
- (60) Provisional application No. 61/062,772, filed on Jan. 28, 2008, provisional application No. 61/084,681, filed on Jul. 30, 2008, provisional application No. 61/147,715, filed on Jan. 27, 2009.

(51)	Int. Cl.	
	A61K 31/42	(2006.01)
	A61K 31/497	(2006.01)
	A61K 31/47	(2006.01)
	A61K 31/421	(2006.01)
	A61K 31/422	(2006.01)
	A61K 31/426	(2006.01)
	A61K 31/427	(2006.01)
	A61K 31/428	(2006.01)
	A61K 31/433	(2006.01)
	A61K 31/435	(2006.01)
	A61K 31/4439	(2006.01)
	A61K 31/454	(2006.01)
	A61K 31/4545	(2006.01)
	A61K 31/4709	(2006.01)
	A61K 31/4725	(2006.01)
	A61K 31/496	(2006.01)
	A61K 31/498	(2006.01)
	A61K 31/506	(2006.01)
	A61K 31/5377	(2006.01)
	A61K 31/55	(2006.01)

(52) U.S. Cl.

 (10) Patent No.: US 9,433,611 B2

(45) **Date of Patent:**

Sep. 6, 2016

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,762,185	B1	7/2004	Kahn et al.
7,067,474	B1	6/2006	Birchmeier et al.
2005/0256076	A1	11/2005	Bumcrot
2006/0165699	A1	7/2006	Colland et al.
2011/0251144	A1	10/2011	Moon et al.

FOREIGN PATENT DOCUMENTS

JP	60-208971	10/1985
WO	2006116503	11/2006
	OTHER P	UBLICATIONS

Clemens et al., "Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways", Proceedings of National Academy of Sciences of the United States of America, 2000, vol. 97, No. 12, pp. 6499-6503.

Dasgupta et al., "High-throughput RNAi screen in *Drosophila*", In Wnt Signaling, 2008, vol. II: Pathway Models, (E. Vincan, ed.), vol. 469, pp. 163-184.

Eggerf et al., "Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets", PLoS Biology, 2004, vol. 2, No. 12, pp. 2135-2143.

Kleino et al., "Pirk is a negative regulator of the *Drosophila* Imd pathway", The Journal of Immunology, 2008, vol. 180, pp. 5413-5422

Perrimon et al., "Drug-target identification in *Drosophila* cells: combining high-throughout RNAi and small-molecule screens", Drug Discovery Today, 2007, vol. 12, Nos. 1-2, pp. 28-33.

Luu et al., "Wnt/Beta-catenin signaling pathway as novel cancer drug targets", Current Cancer Drug Targets, 2004, vol. 4, pp. 653-671.

Lepourcelet et al., "Small-molecule antagonists of the oncogenic Tcf/Beta-catenin protein complex", Cancer Cell, 2004, vol. 5, pp. 91-102

Barker et al., "Mining the Wnt pathway for cancer therapeutics", Nature Reviews Drug Discovery, 2006, vol. 5, pp. 997-1014.

(Continued)

Primary Examiner — Shengjun Wang

(74) Attorney, Agent, or Firm — Klauber & Jackson LLC

(57) ABSTRACT

A series of oxazole and thiazole compounds are shown herein to be small molecule inhibitors of the Wnt pathway that specifically target the activity of the stabilized pool of β -cat oxazole and thiazole compounds are disclosed that have a formula represented by the following:

$$A - \left[\prod_{i \in X} R^3\right]_X = R^3$$

Ι

The compounds may be prepared as pharmaceutical compositions, and may be used for the prevention and treatment of a variety of conditions in mammals including humans, including by way of non-limiting example, cancer, and others.

18 Claims, 10 Drawing Sheets

US 9,433,611 B2

Page 2

(56) References Cited

OTHER PUBLICATIONS

Watanabe et al., "Winning WNT: Race to Wnt signaling inhibitors", Proc Natl Academy Sciences, 2011, vol. 108, No. 15, pp. 5929-5930.

Gonsalves et al., "An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway", Proc Natl Academy Sciences, 2011, vol. 108, pp. 5954-5973 and Supplemental Information, pp. 1-8.

ACS registration RN 902585-79-9.

Effect of candidate inhibitors on TOP12-LF in Clone 8 cells

Epistasis Analysis

Effect of candidate inhibitors on S37A $\beta\text{--}catenin$ mediated TOP12-LF in Clone 8 cells

S37A: phosphorylation mutant form of β -catenin

Most compounds exert their inhibitory effect on Wnt-signaling at the transcriptional level

Effect of several inhibitory compounds is recapitulated in (mammalian) HEK-293 cells

Quantitative analysis of Wnt3a induced transformation in C57mg cells

Phenotypic rescue correlates with inhibition of WISP1 transcription

Inhibition of Wnt-target accumulation in HCT116 cells

US 9,433,611 B2

Transcription Inhibition of Wnt-targets in HCT116 cells

Quantification of alpha-PH3 staining in compound treated HCT116 cells

OXAZOLE AND THIAZOLE COMPOUNDS AS β-CATENIN MODULATORS AND USES THEREOF

RELATED APPLICATIONS

The present application is a Continuation Application of U.S. application Ser. No. 12/322,070, filed Jan. 28, 2009 now U.S. Pat. No. 8,252,823, issued Aug. 28, 2012, which in turn claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/062,772 filed Jan. 28, 2008; Ser. No. 61/084,681 filed Jul. 30, 2008; and Ser. No. 61/147,715 filed Jan. 27, 2009. The contents of each of said applications is hereby incorporated by reference in its entirety.

GOVERNMENT RIGHTS

This invention was made with government support under Grant No. W81XWH-04-1-0460 awarded by the Depart- 20 ment of Defense. Accordingly, the United States Government has certain rights in the invention.

FIELD OF THE INVENTION

This invention relates to oxazole and thiazole compounds capable of modulating β-catenin activity and uses of such compounds to modulate the activity of the Wnt/wingless (wg) signaling pathway.

BACKGROUND OF THE INVENTION

Wnts/wingless (wg) are a family of conserved signaling molecules that have been shown to regulate a plethora of fundamental developmental and cell biological processes, 35 including cell proliferation, differentiation and cell polarity [Miller et al. Oncogene 18, 7860-72 (1999); Polakis. Genes Dev 14, 1837-51 (2000); Wodarz et al. Annu Rev Cell Dev Biol 14, 59-88 (1998)]. Mutations in the Wnt genes or in those genes encoding regulators of the Wnt/wg signaling 40 pathway can cause devastating birth defects, including debilitating abnormalities of the central nervous system, axial skeleton, limbs, and occasionally other organs [Ciruna et al. Nature 439, 220-4 (2006); Grove et al. Development 125, 2315-25 (1998); Jiang et al. Dev Dyn 235, 1152-66 45 (2006); Kokubu et al. Development 131, 5469-80 (2004); Miyoshi et al. Breast Cancer Res 5, 63-8 (2003); Shu et al. Development 129, 4831-42 (2002); Staal et al. Hematol J I, 3-6 (2000)]. Aberrant Wnt signaling has also been linked to human disease, such as hepatic, colorectal, breast and skin 50 that the present invention is directed. cancers [Miyoshi et al. supra (2003); Miyoshi et al. Oncogene 21, 5548-56 (2002); Moon et al. Nat Rev Genet 5,

Wnts/wg encode secreted glycoproteins that activate receptor-mediated pathways leading to numerous transcrip- 55 preventing, treating or ameliorating in a mammal a disease tional and cellular responses [Wodarz et al. supra (1998); Moon et al. supra (2004); Nusse. Trends Genet 15, 1-3 (1999)]. The main function of the canonical Wnt pathway is to stabilize the cytoplasmic pool of a key mediator, β -catenin (β-cat)/armadillo (arm), which is otherwise degraded by the 60 proteosome pathway (See FIG. 1). Initially identified as a key player in stabilizing cell-cell adherens junctions, β-cat/ arm is also known to act as a transcription factor by forming a complex with the LEF/TCF (Lymphoid Enhancer Factor/T Cell Factor) family of HMG-box (High mobility group) 65 transcription factors. Upon Wnt stimulation, stabilized β-cat/arm translocates to the nucleus, wherein together with

2

LEF/TCF transcription factors, it activates downstream target genes [Miller et al. supra (1999); Staal et al. supra (2000); Nusse. supra (1999); Schweizer et al. Proc Natl Acad Sci USA 100, 5846-51 (2003)]. Catenin responsive transcription (CRT), which is the activation of transcriptional targets of β-cat, has been shown to regulate many aspects of cell growth, proliferation, differentiation and death. The Wnt/wg pathway can also be activated by inhibiting negative regulators such as GSK-3β (Glycogen Synthase Kinase-3β), APC (Adenomatous Polyposis Coli) and Axin that promote β -cat/arm degradation, or by introducing activating mutations in β-cat that render it incapable of interacting with the degradation complex, thus stabilizing its cytosolic pool [Logan et al. Annu Rev Cell Dev Biol 20, 781-810 (2004); Nusse et al. Cell Res 15, 28-32 (2005)]. Wnt/wg signaling can also activate an alternative "noncanonical" pathway that may lead to PKC (Protein Kinase C) and INK (c-Jun N-terminal Kinase) activation resulting in calcium release and cytoskeletal rearrangements [Miller et al. supra (1999)].

At the plasma membrane, Wnt proteins bind to their receptor, belonging to the Frizzled family of proteins and the co-receptor encoded by LDL-related-protein-5, 6 (LRP5, LRP6)/arrow (arr, in *Drosophila*) [Schweizer et al. BMC Cell Biol 4, 4 (2003); Tamai et al. Mol Cell 13, 149-56 (2004)]. In the absence of the Wnt stimulus, GSK-3β is known to phosphorylate β-cat/arm, which marks it for ubiquitination and subsequent proteosome-mediated degradation. Activation of the receptor/co-receptor complex upon Wnt binding initiates a signal transduction cascade, which results in phosphorylation and subsequent inactivation of GSK-31324.

Recent evidence has uncovered a new branch in the canonical Wnt/wg pathway whereby β-cat/arm can be stabilized in a GSK-3β independent fashion suggesting that regulated degradation of β-cat/arm (by GSK-3β) is not necessary for Wnt/wg signaling [Tolwinski et al. Dev Cell 4, 407-18 (2003); Tolwinski et al. Trends Genet 20, 177-81 (2004)]. Specifically, upon Wg binding, Arr directly recruits Axin (a scaffold protein which acts as a negative regulator) to the plasma membrane and causes its degradation. As a consequence, Arm no longer binds Axin or the degradation complex, resulting in nuclear accumulation and signaling by β-cat/Arm42.

A large number of oxazole and thiazole compounds are commercially available.

In view of the above, a need exists for therapeutic agents, and corresponding pharmaceutical compositions and related methods of treatment that address conditions causally related to aberrant Wnt pathway activity and CRT activity, and it is toward the fulfillment and satisfaction of that need,

SUMMARY OF THE INVENTION

Accordingly, the present invention provides a method for or condition that is causally related to the aberrant activity of the Wnt pathway in vivo, which comprises administering to the mammal an effective disease-treating or conditiontreating amount of a compound according to formula I:

wherein A is A^1 , A^2 or A^3 ;

$$A = \prod_{i \in A} I_{x_i} R^3$$

A1 is

$$(\mathbb{R}^4)_n$$

$$\mathbb{R}^{2a} \mathbb{R}^{2b} \mathbb{R}^{2c} \mathbb{R}^{2d}$$

$$\mathbb{R}^{1}$$

A² is

$$R^2$$
 N
 N
 L^2
 N

A³ is

$$R^2$$
 R^{2b}
 N
 N
 N
 N

x is 1, when A is A^1 or A^2 ; or x is 0, when A is A^3 ; L^1 is S, SO or SO_2 ;

m1 is 1, 2 or 3; n is 1, 2, 3, 4 or 5;

 ${\rm L^2}$ is substituted or unsubstituted ${\rm C_1\text{-}C_6},$ alkylene or $_{40}$ heteroalkylene;

each R^1 , R^{2a} , R^{2b} , R^{2c} , and R^{2d} is independently selected from hydrogen, halo, and substituted or unsubstituted C_1 - C_6 alkyl;

R² is selected from aryl or heteroaryl, unsubstituted or 45 substituted with one or more R⁴;

R³ is hydroxy, alkoxy, substituted or unsubstituted amino or cycloheteroalkyl; or when A is A³, R³ is R⁵;

each R⁴ and R^{5a} is independently selected from H, alkyl, substituted alkyl, acyl, substituted acyl, substituted or 50 unsubstituted acylamino, substituted or unsubstituted alkylamino, substituted or unsubstituted alkythio, substituted or unsubstituted alkoxy, alkoxycarbonyl, substituted alkoxycarbonyl, substituted or unsubstituted alkylarylamino, arylalkyloxy, substituted arylalkyloxy, amino, aryl, substituted aryl, arylalkyl, substituted or unsubstituted sulfonyl, substituted or unsubstituted sulfinyl, substituted or unsubstituted sulfanyl, substituted or unsubstituted aminosulfonyl, substituted or unsubstituted arylsulfonyl, azido, carboxy, substituted or unsubstituted carbamoyl, cyano, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloheteroalkyl, substituted or unsubstituted dialkylamino, halo, heteroaryloxy, substituted or unsubsti- 65 tuted heteroaryl, substituted or unsubstituted heteroalkyl, hydroxy, nitro, and thiol; and

4

R⁵ is selected from aryl or heteroaryl, unsubstituted or substituted with one or more R^{5a}; or a pharmaceutically acceptable salt, solvate or prodrug thereof;

and stereoisomers, isotopic variants and tautomers thereof.

In one particular embodiment, with respect to compounds of formula I, \mathbf{A}^1 is

10

15

25

30

$$(R^4)_n$$

$$N$$

$$L^1$$

$$M$$

$$R^{2a}$$

$$R^{2b}$$

$$R^{2c}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2d}$$

In one particular embodiment, with respect to compounds of formula I, A^2 is

$$R^{1}$$
 O S N L^{2} N

In one particular embodiment, with respect to compounds of formula I, A³ is

$$R^2$$
 R^{2a}
 R^{2b}
 R^{2b}
 R^{2b}
 R^{2b}
 R^{2b}
 R^{2b}

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIa:

 $(\mathbb{R}^4)_n$ $\mathbb{R}^{2a} \mathbb{R}^{2b} \mathbb{R}^{2c} \mathbb{R}^{2d}$ $\mathbb{R}^3;$ $\mathbb{R}^3;$

and wherein L^1 , m1, n, R^1 , R^{2a} , R^{2b} , R^{2c} , R^{2d} , R^3 , and R^4 are as described for formula I.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIb:

Пc

$$R^2$$
 N
 L^2
 R^3

and wherein L^2 , R^1 , R^2 , R^3 , and R^4 are as described for formula I.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIc:

$$\mathbb{R}^{2b}$$
 \mathbb{R}^{2a}
 \mathbb{R}^{2a}
 \mathbb{R}^{2b}
 \mathbb{R}^{2b}
 \mathbb{R}^{5}

and wherein R^{2a} , R^{2b} , R^2 , R^4 and R^5 are as described for $_{30}$ formula I.

In a further aspect, the present invention provides pharmaceutical compositions comprising an oxazole or an thiazole compound of the invention, and a pharmaceutically acceptable carrier, excipient or diluent. In this aspect of the assume that invention, the pharmaceutical composition can comprise one or more of the compounds described herein. Moreover, the compounds of the present invention useful in the pharmaceutical compositions and treatment methods disclosed herein, are all pharmaceutically acceptable as prepared and an used

In a further aspect, this invention provides the compounds of the invention and other agents for use in the treatment of mammals susceptible to or afflicted with a condition from those listed herein, and particularly, such conditions as may 45 be associated with alterations or aberrations in Wnt/wg pathway signaling.

In addition to the methods of treatment set forth above, the present invention extends to the use of any of the compounds of the invention for the preparation of medicaments that may be administered for such treatments, as well as to such compounds for the treatments disclosed and specified.

A further aspect and object of the invention, is to provide a method of treating a mammal susceptible to or afflicted 55 with a condition from among those listed herein, and particularly, such condition as may be associated with e.g. altered Wnt/wg pathway signaling, by administering to such mammal a an effective disease-treating or condition-treating amount of a compound or composition of the invention. 60 Such conditions include, without limitation, a variety of hyperproliferative disorders and cancers, including hepatic, colorectal, breast and skin cancers. Additional support for this aspect of the invention is presented in the fact that most cancers of the skin, intestine, and breast epithelial tissue are 65 a result of increased levels of the activated/signaling pool of β -catenin. A number of birth defects are also associated with

altered Wnt/wg pathway signaling, including debilitating abnormalities of the central nervous system, axial skeleton, limbs, and occasionally other organs.

Other objects and advantages will become apparent to those skilled in the art from a consideration of the ensuing detailed description, which proceeds with reference to the following illustrative drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a bar graph depicting the activity of candidate inhibitors on TOP12-LF in Clone 8 cells.

 $FIG.\ 2$ shows a bar graph depicting the results of genetic epistasis analyses.

FIG. 3 shows a bar graph depicting the activity of candidate inhibitors on S37A β -catenin mediated TOP12-LF in Clone 8 cells.

FIG. 4 shows a bar graph representation of the effect of several inhibitory compounds in mammalian HEK-293 cells.

FIG. 5 shows photomicrographs of Wnt3a transformed C57 mg cell phenotypes and rescue thereof by inhibitory compounds.

FIG. **6** shows a bar graph of quantitative analyses of Wnt3a transformed C57 mg cell phenotypes and rescue thereof by inhibitory compounds.

FIG. $\overline{7}$ shows Inhibition of Wnt-target accumulation in HCT116 cells.

FIG. 8 shows Transcription Inhibition of Wnt-targets in HCT116 cells.

FIG. 9 shows C3 & C14 cause G0/G1 arrest.

FIG. 10 shows Quantification of - α PH3 staining in compound treated HCT116 cells.

DETAILED DESCRIPTION OF THE INVENTION

General Introduction

As indicated above, the Wnt pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Misregulation or aberrant regulation of the Wnt pathway can lead to adverse effects as demonstrated by the causal relationship identified between mutations in several components of the pathway and tumorigenesis of the liver, colon, breast and the skin. One of the most important effectors of the Wnt pathway is encoded by β -catenin (β -cat)/armadillo (arm). Induction by Wnt ligands leads to stabilization of cytosolic β -cat, which subsequently translocates into the nucleus to activate target genes that regulate many aspects of cell proliferation, growth, differentiation and death.

Since Catenin Responsive Transcription (CRT) has been implicated in the genesis of many cancers, this effector step of the pathway provides a good target for developing therapeutics that could modulate Wnt pathway activity, and more particularly, the nuclear activity of β -cat. Notably, the family of compounds disclosed herein are inhibitors that specifically target the activity of the signaling pool of β -catenin.

DEFINITIONS

The following terms are intended to have the meanings presented therewith below and are useful in understanding the description and intended scope of the present invention.

When describing the invention, which may include compounds, pharmaceutical compositions containing such com-

pounds and methods of using such compounds and compositions, the following terms, if present, have the following meanings unless otherwise indicated. It should also be understood that when described herein any of the moieties defined forth below may be substituted with a variety of substituents, and that the respective definitions are intended to include such substituted moieties within their scope as set out below. Unless otherwise stated, the term "substituted" is to be defined as set out below. It should be further understood that the terms "groups" and "radicals" can be considered interchangeable when used herein.

The articles "a" and "an" may be used herein to refer to one or to more than one (i.e. at least one) of the grammatical objects of the article. By way of example "an analogue" means one analogue or more than one analogue.

'Acyl' or 'Alkanoyl' refers to a radical — $C(O)R^{20}$, where R^{20} is hydrogen, C_1 - C_8 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylmethyl, 4-10 membered heterocycloalkyl, aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl as defined herein. Representative examples include, but are not 20 limited to, formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl and benzylcarbonyl. Exemplary 'acyl' groups are —C(O)H, —C(O)— C_1 - C_8 alkyl, —C(O)— $(CH_2)_t(C_6$ - C_{10} aryl), —C(O)— $(CH_2)_t(5$ -10 membered heteroaryl), —C(O)— $(CH_2)_t(4$ -10 membered heterocycloalkyl), wherein t is an integer from 0 to 4.

'Substituted Acyl' or 'Substituted Alkanoyl' refers to a radical $-C(O)R^{21}$, wherein R^{21} is independently

 $\begin{array}{lll} C_1\text{-}C_8 & \text{alkyl, substituted with halo or hydroxy; or} & \text{30} \\ C_3\text{-}C_{10} & \text{cycloalkyl, } & \text{4-10} & \text{membered heterocycloalkyl,} \\ C_6\text{-}C_{10} & \text{aryl, arylalkyl, } & \text{5-10} & \text{membered heteroaryl or} \\ & \text{heteroarylalkyl, each of which is substituted with} \\ & \text{unsubstituted } C_1\text{-}C_4 & \text{alkyl, halo, unsubstituted } & \text{C_1-}C_4 \\ & \text{alkoxy, unsubstituted } & \text{C_1-}C_4 & \text{haloalkyl, unsubstituted} & \text{35} \\ & \text{C_1-}C_4 & \text{hydroxyalkyl, or unsubstituted} & \text{C_1-}C_4 & \text{haloalkoxy} \\ & \text{or hydroxy.} & \end{array}$

'Acylamino' refers to a radical —NR 22 C(O)R 23 , where R 22 is hydrogen, C $_1$ -C $_8$ alkyl, C $_3$ -C $_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, C $_6$ -C $_{10}$ aryl, arylalkyl, 5-10 mem-40 bered heteroaryl or heteroarylalkyl and R 23 is hydrogen, C $_1$ -C $_8$ alkyl, C $_3$ -C $_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, C $_6$ -C $_{10}$ aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl, as defined herein. Exemplary 'acylamino' include, but are not limited to, formylamino, acety-45 lamino, cyclohexylcarbonylamino, cyclohexylcarbonylamino. Particular exemplary 'acylamino' groups are —NR 24 C (O)—C $_1$ -C $_8$ alkyl, —NR 24 C(O)—(CH $_2$) $_t$ (C $_6$ -C $_{10}$ aryl), (O)—(CH $_2$) $_t$ (5-10 membered heteroaryl), —NR 24 C(O)— 50 (CH $_2$) $_t$ (C $_3$ -C $_{10}$ cycloalkyl), and —NR 24 C(O)—(CH $_2$) $_t$ (4-10 membered heterocycloalkyl), wherein t is an integer from 0 to 4, and each R 24 independently represents H or C $_1$ -C $_8$ alkyl.

'Substituted Acylamino' refers to a radical — $NR^{25}C(O)$ 55 R^{26} , wherein:

R²⁵ is independently

H, C₁-C₈ alkyl, substituted with halo or hydroxy; or

 $\begin{array}{llll} C_3\text{-}C_{10} & \text{cycloalkyl}, & 4\text{-}10 & \text{membered heterocycloalkyl}, \\ C_6\text{-}C_{10} & \text{aryl}, & \text{arylalkyl}, & 5\text{-}10 & \text{membered heteroaryl} & \text{or} & 60 \\ & \text{heteroarylalkyl}, & \text{each of which is substituted with} \\ & \text{unsubstituted } C_1\text{-}C_4 & \text{alkyl}, & \text{halo, unsubstituted } C_1\text{-}C_4 \\ & \text{alkoxy, unsubstituted } C_1\text{-}C_4 & \text{haloalkyl, unsubstituted} \\ & C_1\text{-}C_4 & \text{hydroxyalkyl, or unsubstituted } C_1\text{-}C_4 & \text{haloalkoxy} \\ & \text{or hydroxy; and} & 65 \\ \end{array}$

R²⁶ is independently

H, C₁-C₈ alkyl, substituted with halo or hydroxy; or

8

 $\label{eq:c3-C10} C_{3}-C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_{6}-C_{10} aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl, each of which is substituted with unsubstituted C_{1}-C_{4} alkyl, halo, unsubstituted C_{1}-C_{4} alkoxy, unsubstituted C_{1}-C_{4} haloalkyl, unsubstituted C_{1}-C_{4} hydroxyalkyl, or unsubstituted C_{1}-C_{4} haloalkoxy or hydroxyl;$

provided at least one of R²⁵ and R²⁶ is other than H.

'Acyloxy' refers to a radical —OC(O)R²⁷, where R²⁷ is hydrogen, C_1 - C_8 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylmethyl, 4-10 membered heterocycloalkyl, aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl as defined herein. Representative examples include, but are not limited to, formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl and benzylcarbonyl. Exemplary 'acyl' groups are —C(O)H, —C(O)— C_1 - C_8 alkyl, —C(O)— $(CH_2)_t(C_6$ - C_{10} aryl), —C(O)— $(CH_2)_t(5$ -10 membered heteroaryl), —C(O)— $(CH_2)_t(4$ -10 membered heterocycloalkyl), wherein t is an integer from 0 to 4.

'Substituted Acyloxy' refers to a radical —OC(O)R²⁸, wherein R²⁸ is independently

C₁-C₈ alkyl, substituted with halo or hydroxy; or

 C_3 - C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl, each of which is substituted with unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy.

'Alkoxy' refers to the group — OR^{29} where R^{29} is C_1 - C_8 alkyl. Particular alkoxy groups are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy. Particular alkoxy groups are lower alkoxy, i.e. with between 1 and 6 carbon atoms. Further particular alkoxy groups have between 1 and 4 carbon atoms.

'Substituted alkoxy' refers to an alkoxy group substituted with one or more of those groups recited in the definition of "substituted" herein, and particularly refers to an alkoxy group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, in particular 1 substituent, selected from the group consisting of amino, substituted amino, C₆-C₁₀ aryl, aryloxy, carboxyl, cyano, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, halogen, 5-10 membered heteroaryl, hydroxyl, nitro, thioalkoxy, thioaryloxy, thiol, alkyl-S(O)—, aryl-S(O)—, alkyl- $S(O)_2$ — and aryl- $S(O)_2$ —. Exemplary 'substituted alkoxy' groups are -O— $(CH_2)_t(C_6$ - C_{10} aryl), -O— $(CH_2)_t(5-10$ membered heteroaryl), -O— $(CH_2)_t(C_3$ - C_{10} cycloalkyl), and -O— $(CH_2)_t(4-10$ membered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy. Particular exemplary 'substituted alkoxy' groups are OCF₃, OCH₂CF₃, OCH₂Ph, OCH₂cyclopropyl, OCH2CH2OH, and OCH2CH2NMe2.

'Alkoxycarbonyl' refers to a radical -C(O)— OR^{30} where R^{30} represents an C_1 - C_8 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylalkyl, 4-10 membered heterocycloalkylalkyl, aralkyl, or 5-10 membered heteroarylalkyl as defined herein. Exemplary "alkoxycarbonyl" groups are C(O)O— C_1 - C_8 alkyl, -C(O)O— $(CH_2)_t(C_6$ - C_{10} aryl), -C(O)O— $(CH_2)_t(S_3$ - C_{10} membered heteroaryl), -C(O)O— $(CH_2)_t(S_3$ - C_{10} membered heteroaryl), -C(O)O— $(CH_2)_t(C_3$ - C_{10}

 C_{10} cycloalkyl), and —C(O)O— $(CH_2)_t(4-10$ membered heterocycloalkyl), wherein t is an integer from 1 to 4.

'Substituted Alkoxycarbonyl' refers to a radical —C(O)—OR³¹ where R³¹ represents:

C₁-C₈ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkylalkyl, 5 or 4-10 membered heterocycloalkylalkyl, each of which is substituted with halo, substituted or unsubstituted amino, or hydroxy; or

 C_6 - C_{10} aralkyl, or 5-10 membered heteroarylalkyl, each of which is substituted with unsubstituted C_1 - C_4 alkyl, 10 halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxyl.

'Aryloxycarbonyl' refers to a radical —C(O)— OR^{32} where R^{32} represents an C_6 - C_{10} aryl, as defined herein. 15 Exemplary "aryloxycarbonyl" groups is —C(O)O— $(C_6$ - C_{10} aryl).

'Substituted Aryloxycarbonyl' refers to a radical—C(O)—OR³³ where R³³ represents

 C_6 - C_{10} aryl, substituted with unsubstituted C_1 - C_4 alkyl, 20 halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxyl.

'Heteroaryloxycarbonyl' refers to a radical —C(O)—OR³⁴ where R³⁴ represents a 5-10 membered heteroaryl, as 25 defined herein. An exemplary "aryloxycarbonyl" group is —C(O)O-(5-10 membered heteroaryl).

'Substituted Heteroaryloxycarbonyl' refers to a radical—C(O)—OR³⁵ where R³⁵ represents:

5-10 membered heteroaryl, substituted with unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxyl.

"Alkoxycarbonylamino" refers to the group —NR 36 C(O) OR 37 , where R 36 is hydrogen, C₁-C₈ alkyl, C₃-C₁₀ 35 cycloalkyl, C₃-C₁₀ cycloalkylmethyl, 4-10 membered heterocycloalkyl, aryl, arylalkyl, 5-10 membered heteroarylalkyl as defined herein, and R 37 is C₁-C₈ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkylmethyl, 4-10 membered heterocycloalkyl, aryl, arylalkyl, 5-10 membered heteroaryl or heteroarylalkyl as defined herein.

'Alkyl' means straight or branched aliphatic hydrocarbon having 1 to 20 carbon atoms. Particular alkyl has 1 to 12 carbon atoms. More particular is lower alkyl which has 1 to 6 carbon atoms. A further particular group has 1 to 4 carbon 45 atoms. Exemplary straight chained groups include methyl, ethyl n-propyl, and n-butyl. Branched means that one or more lower alkyl groups such as methyl, ethyl, propyl or butyl is attached to a linear alkyl chain, exemplary branched chain groups include isopropyl, iso-butyl, t-butyl and iso-50 amyl.

'Substituted alkyl' refers to an alkyl group as defined above substituted with one or more of those groups recited in the definition of "substituted" herein, and particularly refers to an alkyl group having 1 or more substituents, for 55 instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, in particular 1 substituent, selected from the group consisting of acyl, acylamino, acyloxy (—O-acyl or -OC(O)R²⁰), alkoxy, alkoxycarbonyl, alkoxycarbonylamino (-NR"-alkoxycarbonyl or -NH-C(O)- 60 OR²⁷), amino, substituted amino, aminocarbonyl (carbamoyl or amido or —C(O)—NR"₂), aminocarbonylamino -NR"-C(O)-NR"₂), aminocarbonyloxy (-O-C(O)-NR"₂), aminosulfonyl, sulfonylamino, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, halogen, hydroxy, heteroaryl, 65 nitro, thiol, —S-alkyl, —S-aryl, —S(O)-alkyl,—S(O)-aryl, $-S(O)_2$ -alkyl, and $-S(O)_2$ -aryl. In a particular embodi10

ment 'substituted alkyl' refers to a C_1 - C_8 alkyl group substituted with halo, cyano, nitro, trifluoromethyl, trifluoromethoxy, azido, —NR"'SO_2R", —SO_2NR"R"', —C(O) R", —C(O)OR", —OC(O)R", —NR"'C(O)R", —C(O) NR"R"', or —(CR"'R"") $_m$ OR"'; wherein each R" is independently selected from H, C_1 - C_8 alkyl, —(CH $_2$) $_t$ (C_6 - C_{10} aryl), —(CH $_2$) $_t$ (C_5 -10 membered heteroaryl), —(CH $_2$) $_t$ (C_3 - C_{10} cycloalkyl), and —(CH $_2$) $_t$ (4-10 membered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy. Each of R'" and R'" independently represents H or C_1 - C_8 alkyl.

"Alkylene" refers to divalent saturated alkene radical groups having 1 to 11 carbon atoms and more particularly 1 to 6 carbon atoms which can be straight-chained or branched. This term is exemplified by groups such as methylene (—CH $_2$ —), ethylene (—CH $_2$ CH $_2$ —), the propylene isomers (e.g., —CH $_2$ CH $_2$ CH $_2$ — and —CH(CH $_3$) CH $_2$ —) and the like.

'Substituted alkylene' refers to those groups recited in the definition of "substituted" herein, and particularly refers to an alkylene group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl, amino-carbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, halogen, hydroxyl, keto, nitro, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S(O)—, aryl-S(O)—, alkyl-S(O)2— and aryl-S(O)2—.

"Alkenyl" refers to monovalent olefinically unsaturated hydrocarbyl groups preferably having 2 to 11 carbon atoms, particularly, from 2 to 8 carbon atoms, and more particularly, from 2 to 6 carbon atoms, which can be straight-chained or branched and having at least 1 and particularly from 1 to 2 sites of olefinic unsaturation. Particular alkenyl groups include ethenyl (—CH—CH₂), n-propenyl (—CH₂CH—CH₂), isopropenyl (—C(CH₃)—CH₂), vinyl and substituted vinyl, and the like.

"Substituted alkenyl" refers to those groups recited in the definition of "substituted" herein, and particularly refers to an alkenyl group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, substituted cycloalkyl, halogen, hydroxyl, keto, nitro, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S (O)—, aryl-S(O)—, alkyl-S(O)2— and aryl-S(O)2—.

"Alkenylene" refers to divalent olefinically unsaturated hydrocarbyl groups particularly having up to about 11 carbon atoms and more particularly 2 to 6 carbon atoms which can be straight-chained or branched and having at least 1 and particularly from 1 to 2 sites of olefinic unsaturation. This term is exemplified by groups such as ethenylene (—CH—CH—), the propenylene isomers (e.g., —CH—CHCH₂— and —C(CH₃)—CH— and —CH—C (CH₃)—) and the like.

"Alkynyl" refers to acetylenically or alkynically unsaturated hydrocarbyl groups particularly having 2 to 11 carbon atoms, and more particularly 2 to 6 carbon atoms which can

be straight-chained or branched and having at least 1 and particularly from 1 to 2 sites of alkynyl unsaturation. Particular non-limiting examples of alkynyl groups include acetylenic, ethynyl (—C=CH), propargyl (—CH₂C=CH), and the like.

"Substituted alkynyl" refers to those groups recited in the definition of "substituted" herein, and particularly refers to an alkynyl group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, substituted cycloalkyl, halogen, hydroxyl, keto, nitro, thioalkoxy, sub- 15 stituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S (O)—, aryl-S(O)—, alkyl-S(O)₂— and aryl-S(O)₂—. 'Amino' refers to the radical —NH₂.

'Substituted amino' refers to an amino group substituted with one or more of those groups recited in the definition of 20 'substituted' herein, and particularly refers to the group $-N(R^{38})_2$ where each R^{38} is independently selected from: hydrogen, C₁-C₈ alkyl, C₆-C₁₀ aryl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, or C₃-C₁₀ cycloalkyl; or

C₁-C₈ alkyl, substituted with halo or hydroxy; or

 $-(CH_2)_t(C_6-C_{10} \text{ aryl}), -(CH_2)_t(5-10 \text{ membered heteroaryl}), -(CH_2)_t(C_3-C_{10} \text{ cycloalkyl}) \text{ or } -(CH_2)_t(4-t)_$ 10 membered heterocycloalkyl) wherein t is an integer between 0 and 8, each of which is substituted by 30 unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C1-C4 haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy; or

both R³⁸ groups are joined to form an alkylene group. When both R^{38} groups are hydrogen, $-N(R^{38})_2$ is an amino group. Exemplary 'substituted amino' groups are —NR³⁹ C_1 - C_8 alkyl, $-NR^{39}$ — $(CH_2)_t(C_6$ - C_{10} aryl), $-NR^{39}$ — $(CH_2)_t$ (5-10 membered heteroaryl), $-NR^{39}$ — $(CH_2)_t$ (C_3 - C_{10} cycloalkyl), and $-NR^{39}$ $-(CH_2)_t(4-10)$ membered 40 heterocycloalkyl), wherein t is an integer from 0 to 4, each R^{39} independently represents H or $C_1\text{-}C_8$ alkyl; and any alkyl groups present, may themselves be substituted by halo, substituted or unsubstituted amino, or hydroxy; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, 45 may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C1-C4 hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy. For the avoidance of doubt the term "substituted amino" includes the groups 50 alkylamino, substituted alkylamino, alkylarylamino, substituted alkylarylamino, arylamino, substituted arylamino, dialkylamino and substituted dialkylamino as defined below.

'Alkylamino' refers to the group -NHR⁴⁰, wherein R⁴⁰ is C_1 - C_8 alkyl;

'Substituted Alkylamino' refers to the group —NHR41, wherein R^{41} is C_1 - C_8 alkyl; and the alkyl group is substituted with halo, substituted or unsubstituted amino, hydroxy, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, 5-10 membered heteroaryl, aralkyl or heteroaralkyl; 60 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

Alkylarylamino' refers to the group —NR⁴²R⁴³, wherein R^{42} is aryl and R^{43} is C_1 - C_8 alkyl.

12

'Substituted Alkylarylamino' refers to the group $-NR^{44}R^{45}$, wherein R^{44} is aryl and R^{45} is C_1 - C_8 alkyl; and the alkyl group is substituted with halo, substituted or unsubstituted amino, hydroxy, C_3 - C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, 5-10 membered heteroaryl, aralkyl or heteroaralkyl; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, cyano, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

'Arylamino' means a radical —NHR46 where R46 is selected from C₆-C₁₀ aryl and 5-10 membered heteroaryl as defined herein.

'Substituted Arylamino' refers to the group —NHR⁴⁷ wherein R^{47} is independently selected from $C_6\text{-}C_{10}$ aryl and 5-10 membered heteroaryl; and any aryl or heteroaryl groups present, may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, cyano, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or

'Dialkylamino' refers to the group —NR⁴⁸R⁴⁹, wherein each of R⁴⁸ and R⁴⁹ are independently selected from C₁-C₈

'Substituted Dialkylamino' refers to the group -NR⁵⁰R⁵¹, wherein each of R⁵⁹ and R⁵¹ are independently selected from C1-C8 alkyl; and at least one of the alkyl groups is independently substituted with halo, hydroxy, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, 5-10 membered heteroaryl, aralkyl or heteroaralkyl; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_{1-4} haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

'Diarylamino' refers to the group — $N^{52}R^{53}$, wherein each of R^{52} and R^{53} are independently selected from C_6 - C_{10} aryl. "Aminosulfonyl" or "Sulfonamide" refers to the radical $-S(O_2)NH_2$

"Substituted aminosulfonyl" or "substituted sulfonamide" refers to a radical such as $-S(O_2)N(R^{54})_2$ wherein each R⁵⁴⁸ is independently selected from:

H, C_1 - C_8 alkyl, C_3 - C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl; or

C₁-C₈ alkyl substituted with halo or hydroxy; or

C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, aralkyl, 5-10 membered heteroaryl, or heteroaralkyl, each of which is substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy;

55 provided that at least one R⁵⁴ is other than H.

Exemplary 'substituted aminosulfonyl' or 'substituted sulfonamide' groups are $-S(O_2)N(R^{55})-C_1-C_8$ alkyl, $-S(O_2)N(R^{55})$ — $(CH_2)_t(C_6-C_{10} \text{ aryl})$, $-S(O_2)N(R^{55})$ — $(CH_2)_t(5-10 \text{ membered heteroaryl})$, $-S(O_2)N(R^{55})$ — $(CH_2)_t(S-10 \text{ membered heteroaryl})$ $(CH_2)_t$ $(C_3-C_{10} \text{ cycloalkyl})$, and $-S(O_2)N(R^{55})-(CH_2)_t(4-R^{55})$ 10 membered heterocycloalkyl), wherein t is an integer from 0 to 4; each R⁵⁵ independently represents H or C₁-C₈ alkyl; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C1-C4 alkyl, halo, unsubstituted C1-C4 alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

'Aralkyl' or 'arylalkyl' refers to an alkyl group, as defined above, substituted with one or more aryl groups, as defined above. Particular aralkyl or arylalkyl groups are alkyl groups substituted with one aryl group.

'Substituted Aralkyl' or 'substituted arylalkyl' refers to an 5 alkyl group, as defined above, substituted with one or more aryl groups; and at least one of the aryl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, cyano, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or 10 unsubstituted C_1 - C_4 haloalkoxy or hydroxy.

'Aryl' refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. In particular aryl refers to an aromatic ring structure, mono-cyclic or poly-cyclic that includes from 5 to 12 ring members, more usually 6 to 10. Where the aryl group is a monocyclic ring system it preferentially contains 6 carbon atoms. Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, 20 anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, 25 picene, pleiadene, pyrene, pyranthrene, rubicene, triphenvlene and trinaphthalene. Particularly aryl groups include phenyl, naphthyl, indenyl, and tetrahydronaphthyl.

'Substituted Aryl' refers to an aryl group substituted with one or more of those groups recited in the definition of 30 'substituted' herein, and particularly refers to an aryl group that may optionally be substituted with 1 or more substituents, for instance from 1 to 5 substituents, particularly 1 to 3 substituents, in particular 1 substituent. Particularly, 'Substituted Aryl' refers to an aryl group substituted with one or 35 more of groups selected from halo, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, cyano, hydroxy, C_1 - C_8 alkoxy, and amino.

Examples of representative substituted aryls include the following

$$\mathbb{R}^{49}$$
, \mathbb{R}^{49} and \mathbb{R}^{49} .

In these formulae one of R⁵⁶ and R⁵⁷ may be hydrogen and at least one of R56 and R57 is each independently selected from C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, 4-10 membered 55 heterocycloalkyl, alkanoyl, C_1 - C_8 alkoxy, heteroaryloxy, alkylamino, arylamino, heteroarylamino, NR⁵⁸COR⁵⁹. NR⁵⁸SOR⁵⁹NR⁵⁸SO₂R⁵⁹ COOalkyl, COOaryl, CONR⁵⁸OR⁵⁹, CONR⁵⁸OR⁵⁹, NR⁵⁸R⁵⁹, SO₂NR⁵⁸R⁵ S-alkyl, SOalkyl, SO₂alkyl, Saryl, SOaryl, SO₂aryl; or R⁵⁶ and R⁵⁷ may be joined to form a cyclic ring (saturated or unsaturated) from 5 to 8 atoms, optionally containing one or more heteroatoms selected from the group N, O or S. R⁶⁰, and R⁶¹ are independently hydrogen, C₁-C₈ alkyl, C₁-C₄ haloalkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocy- 65 cloalkyl, C_6 - C_{10} aryl, substituted aryl, 5-10 membered het14

"Fused Aryl" refers to an aryl having two of its ring carbon in common with a second aryl ring or with an aliphatic ring.

'Arylalkyloxy' refers to an —O-alkylaryl radical where alkylaryl is as defined herein.

'Substituted Arylalkyloxy' refers to an —O-alkylaryl radical where alkylaryl is as defined herein; and any aryl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, cyano, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy.

'Azido' refers to the radical -N₃.

'Carbamoyl or amido' refers to the radical —C(O)NH₂.

'Substituted Carbamoyl or substituted amido' refers to the adical —C(O)N(R⁶²), wherein each R⁶² is independently

15 radical —C(O)N(R⁶²)₂ wherein each R⁶² is independently H, C₁-C₈ alkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl; or

C₁-C₈ alkyl substituted with halo or hydroxy; or

 ${
m C}_3^{-}{
m C}_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, ${
m C}_6^{-}{
m C}_{10}$ aryl, aralkyl, 5-10 membered heteroaryl, or heteroaralkyl, each of which is substituted by unsubstituted ${
m C}_1^{-}{
m C}_4$ alkyl, halo, unsubstituted ${
m C}_1^{-}{
m C}_4$ alkoxy, unsubstituted ${
m C}_1^{-}{
m C}_4$ haloalkyl, unsubstituted ${
m C}_1^{-}{
m C}_4$ hydroxyalkyl, or unsubstituted ${
m C}_1^{-}{
m C}_4$ haloalkoxy or hydroxy;

provided that at least one R^{62} is other than H. Exemplary 'Substituted Carbamoyl' groups are —C(O) NR^{64} — C_1 - C_8 alkyl, —C(O) NR^{64} — $(CH_2)_t(C_6$ - C_{10} aryl), —C(O) N^{64} — $(CH_2)_t(C_3$ - C_{10} orycloalkyl), and —C(O) NR^{64} — $(CH_2)_t(C_3$ - C_{10} cycloalkyl), and —C(O) NR^{64} — $(CH_2)_t(C_3$ - C_{10} cycloalkyl), wherein t is an integer from 0 to 4, each R^{64} independently represents H or C_1 - C_8 alkyl and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy.

'Carboxy' refers to the radical —C(O)OH.

'Cycloalkyl' refers to cyclic non-aromatic hydrocarbyl groups having from 3 to 10 carbon atoms. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclooc-45 tyl.

'Substituted cycloalkyl' refers to a cycloalkyl group as defined above substituted with one or more of those groups recited in the definition of 'substituted' herein, and particularly refers to a cycloalkyl group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, in particular 1 substituent

'Cyano' refers to the radical —CN.

'Halo' or 'halogen' refers to fluoro (F), chloro (Cl), bromo (Br) and iodo (I). Particular halo groups are either fluoro or chloro.

'Hetero' when used to describe a compound or a group present on a compound means that one or more carbon atoms in the compound or group have been replaced by a nitrogen, oxygen, or sulfur heteroatom. Hetero may be applied to any of the hydrocarbyl groups described above such as alkyl, e.g. heteroalkyl, cycloalkyl, e.g. heterocycloalkyl, aryl, e.g. heteroaryl, cycloalkenyl, e.g. cycloheteroalkenyl, and the like having from 1 to 5, and particularly from 1 to 3 heteroatoms.

'Heteroaryl' means an aromatic ring structure, monocyclic or polycyclic, that includes one or more heteroatoms and 5 to 12 ring members, more usually 5 to 10 ring

55

cycloalkyl, 4-10 membered heterocycloalkyl, $\rm C_6\text{-}C_{10}$ aryl, and 5-10 membered heteroaryl.

16

Examples of representative aryl having hetero atoms containing substitution include the following:

$$\begin{array}{c|c} & & & \\ \hline & & & \\ \end{array}, \quad \begin{array}{c} W \\ \\ \\ \end{array} \quad \text{and} \quad \\$$

wherein each W is selected from $C(R^{66})_2$, NR^{66} , O and S; and each Y is selected from carbonyl, NR^{66} , O and S; and R^{66} is independently hydrogen, C_1 - C_8 alkyl, C_3 - C_{10} cycloalkyl, 4-10 membered heterocycloalkyl, C_6 - C_{10} aryl, and 5-10 membered heteroaryl.

As used herein, the term 'heterocycloalkyl' refers to a 4-10 membered, stable heterocyclic non-aromatic ring and/ or including rings containing one or more heteroatoms independently selected from N, O and S, fused thereto. A fused heterocyclic ring system may include carbocyclic rings and need only include one heterocyclic ring. Examples of heterocyclic rings include, but are not limited to, morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl, 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1-pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, pyran (2Hpyran or 4H-pyran), dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran (e.g. 4-tetrahydro pyranyl), imidazoline, imidazolidinone, oxazoline, thiazoline, 2-pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine. Further examples include thiomorpholine and its S-oxide and S,S-dioxide (particularly thiomorpholine). Still further examples include azetidine, piperidone, piperazone, and N-alkyl piperidines such as N-methyl piperidine. Particular examples of heterocycloalkyl groups are shown in the following illustrative examples:

wherein each W is selected from CR⁶⁷, C(R⁶⁷)₂, NR⁶⁷, O and S; and each Y is selected from NR⁶⁷, O and S; and R⁶⁷ is independently hydrogen, C₁-C₈ alkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, 5-10 membered heteroaryl, These heterocycloalkyl rings may be optionally substituted with one or more groups selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl (carbamoyl or amido), aminocarbo-

members. The heteroaryl group can be, for example, a five membered or six membered monocyclic ring or a bicyclic structure formed from fused five and six membered rings or two fused six membered rings or, by way of a further example, two fused five membered rings. Each ring may 5 contain up to four heteroatoms typically selected from nitrogen, sulphur and oxygen. Typically the heteroaryl ring will contain up to 4 heteroatoms, more typically up to 3 heteroatoms, more usually up to 2, for example a single heteroatom. In one embodiment, the heteroaryl ring contains at least one ring nitrogen atom. The nitrogen atoms in the heteroaryl rings can be basic, as in the case of an imidazole or pyridine, or essentially non-basic as in the case of an indole or pyrrole nitrogen. In general the number of basic nitrogen atoms present in the heteroaryl group, including any amino group substituents of the ring, will be less than five. Examples of five membered monocyclic heteroaryl groups include but are not limited to pyrrole, furan, thiophene, imidazole, furazan, oxazole, oxadiazole, oxatriazole, isoxazole, thiazole, isothiazole, pyrazole, triazole and tetra-20 zole groups. Examples of six membered monocyclic heteroaryl groups include but are not limited to pyridine, pyrazine, pyridazine, pyrimidine and triazine. Particular examples of bicyclic heteroaryl groups containing a five membered ring fused to another five membered ring include 25 but are not limited to imidazothiazole and imidazoimidazole. Particular examples of bicyclic heteroaryl groups containing a six membered ring fused to a five membered ring include but are not limited to benzfuran, benzthiophene, benzimidazole, benzoxazole, isobenzoxazole, benzisoxazole, benzihiazole, benzisothiazole, isobenzofuran, indole, isoindole, isoindolone, indolizine, indoline, isoindoline, purine (e.g., adenine, guanine), indazole, pyrazolopyrimidine, triazolopyrimidine, benzodioxole and pyrazolopyridine groups. Particular examples of bicyclic heteroaryl 35 groups containing two fused six membered rings include but are not limited to quinoline, isoquinoline, chroman, thiochroman, chromene, isochromene, chroman, isochroman, benzodioxan, quinolizine, benzoxazine, benzodiazine, pyridopyridine, quinoxaline, quinazoline, cinnoline, phthala- 40 zine, naphthyridine and pteridine groups. Particular heteroaryl groups are those derived from thiophene, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole and pyrazine.

Examples of representative heteroaryls include the following:

wherein each Y is selected from carbonyl, N, NR 65 , O and S; and R 65 is independently hydrogen, C_1 - C_8 alkyl, C_3 - C_{10}

nylamino, aminosulfonyl, sulfonylamino, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, halogen, hydroxy, keto, nitro, thiol, —S-alkyl, —S-aryl, —S(O)-alkyl, —S(O)-aryl, —S(O)₂-alkyl, and —S(O)₂-aryl. Substituting groups include carbonyl or thiocarbonyl which provide, for 5 example, lactam and urea derivatives.

'Hydroxy' refers to the radical —OH.

'Nitro' refers to the radical —NO₂.

'Substituted' refers to a group in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s). Typical substituents may be selected from the group consisting of:

wherein each R⁶⁸, R⁶⁹, R⁷⁰ and R⁷¹ are independently: hydrogen, C₁-C₈ alkyl, C₆-C₁₀ aryl, arylalkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, 5-10 ²⁵ membered heteroaryl, heteroarylalkyl; or

C₁-C₈ alkyl substituted with halo or hydroxy; or

 $\rm C_6\text{-}C_{10}$ aryl, 5-10 membered heteroaryl, $\rm C_6\text{-}C_{10}$ cycloalkyl or 4-10 membered heterocycloalkyl each of which is substituted by unsubstituted $\rm C_1\text{-}C_4$ alkyl, halo, unsubstituted $\rm C_1\text{-}C_4$ alkoxy, unsubstituted $\rm C_1\text{-}C_4$ haloalkyl, unsubstituted $\rm C_1\text{-}C_4$ hydroxyalkyl, or unsubstituted $\rm C_1\text{-}C_4$ haloalkoxy or hydroxy.

In a particular embodiment, substituted groups are substituted with one or more substituents, particularly with 1 to 3 substituents, in particular with one substituent group.

In a further particular embodiment the substituent group or groups are selected from halo, cyano, nitro, trifluoromethyl, trifluoromethoxy, azido, $-NR^{72}SO_2R^{73}$, $_{40}$ $-SO_2NR^{73}R^{72}$, $-C(O)R^{73}$, $-C(O)OR^{73}$, $-OC(O)R^{73}$, $-NR^{72}C(O)R^{73}$, $-C(O)NR^{73}R^{72}$, $-NR^{73}R^{72}$, $-(CR^{72}R^{72})_mOR^{72}$, wherein, each R^{73} is independently selected from H, C_1 - C_8 alkyl, $-(CH_2)_t(C_6$ - C_{10} aryl), $-(CH_2)_t(S_1$ - C_1 0 membered heteroaryl), $-(CH_2)_t(C_3$ - C_1 0 45 cycloalkyl), and $-(CH_2)_t(4$ -10 membered heterocycloalkyl), wherein t is an integer from 0 to 4; and

any alkyl groups present, may themselves be substituted by halo or hydroxy; and

any aryl, heteroaryl, cycloalkyl or heterocycloalkyl 50 groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy. Each R" independently represents H or 55 C_1 - C_6 alkyl.

'Substituted sulfanyl' refers to the group — SR^{74} , wherein R^{74} is selected from:

- $\rm C_1\text{-}C_8$ alkyl, $\rm C_3\text{-}C_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, $\rm C_6\text{-}C_{10}$ aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl; or
- C₁-C₈ alkyl substituted with halo, substituted or unsubstituted amino, or hydroxy; or
- C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, or 65 heteroaralkyl, each of which is substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy,

18

unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_4 hydroxyalkyl, or unsubstituted C_1 - C_4 haloalkoxy or hydroxy.

Exemplary 'substituted sulfanyl' groups are —S—(C₁-C₈ alkyl) and $-S-(C_3-C_{10} \text{ cycloalkyl}), -S-(CH_2)_t(C_6-C_{10} \text{ cycloalkyl})$ aryl), —S— $(CH_2)_t(5-10 \text{ membered heteroaryl})$, —S— $(CH_2)_t(C_3-C_{10} \text{ cycloalkyl})$, and $-S-(CH_2)_t(4-10 \text{ mem-}$ bered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy. The term 'substituted sulfanyl' includes the groups 'alkylsulfanyl' or 'alkylthio', 'substituted alkylthio' or 'substituted alkylsulfanyl', 'cycloalkylsulfanyl' or 'cycloalkylthio', 'substituted cycloalkylsulfanyl' or 'substituted cycloalkylthio', 'arylsulfanyl' or 'arylthio' and 'heteroarylsulfanyl' or 'heteroarylthio' as defined below.

'Alkylthio' or 'Alkylsulfanyl' refers to a radical —SR⁷⁵ where R^{75} is a C_1 - C_8 alkyl or group as defined herein. Representative examples include, but are not limited to, methylthio, ethylthio, propylthio and butylthio.

'Substituted Alkylthio' or 'substituted alkylsulfanyl' refers to the group —SR 76 where R 76 is a C₁-C₈ alkyl, substituted with halo, substituted or unsubstituted amino, or hydroxy.

'Cycloalkylthio' or 'Cycloalkylsulfanyl' refers to a radical —SR⁷⁷ where R⁷⁷ is a C₃-C₁₀ cycloalkyl or group as defined herein. Representative examples include, but are not limited to, cyclopropylthio, cyclohexylthio, and cyclopentylthio.

'Substituted cycloalkylthio' or 'substituted cycloalkylsulfanyl' refers to the group $-SR^{78}$ where R^{78} is a C_3 - C_{10} cycloalkyl, substituted with halo, substituted or unsubstituted amino, or hydroxy.

'Arylthio' or 'Arylsulfanyl' refers to a radical —SR 79 where R 79 is a C $_6$ -C $_{10}$ aryl group as defined herein.

'Heteroarylthio' or 'Heteroarylsulfanyl' refers to a radical —SR⁸⁰ where R⁸⁰ is a 5-10 membered heteroaryl group as defined herein.

'Substituted sulfinyl' refers to the group —S(O)R⁸¹, wherein R⁸¹ is selected from:

- $\rm C_1$ - $\rm C_8$ alkyl, $\rm C_3$ - $\rm C_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, $\rm C_6$ - $\rm C_{10}$ aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl; or
- $\rm C_1\text{-}C_8$ alkyl substituted with halo, substituted or unsubstituted amino, or hydroxy; or
- C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, or heteroaralkyl, each of which is substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

Exemplary 'substituted sulfinyl' groups are —S(O)—(C₁- C_8 alkyl) and $-S(O)-(C_3-C_{10}$ cycloalkyl), -S(O)- $(CH_2)_t$ $(C_6-C_{10} \text{ aryl}), -S(O)-(CH_2)_t$ (5-10 membered het- $-S(O)-(CH_2)_t(C_3-C_{10})$ cycloalkyl), eroaryl), -S(O)— $(CH_2)_t(4-10)$ membered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy. The term substituted sulfinyl includes the groups 'alkylsulfinyl', 'substituted alkylsulfi-

nyl', 'cycloalkylsulfinyl', 'substituted cycloalkylsulfinyl', 'arylsulfinyl' and 'heteroarylsulfinyl' as defined herein.

'Alkylsulfinyl' refers to a radical —S(O)R⁸² where R⁸² is a C₁-C₈ alkyl group as defined herein. Representative examples include, but are not limited to, methylsulfinyl, 5 ethylsulfinyl, propylsulfinyl and butylsulfinyl.

'Substituted Alkylsulfinyl' refers to a radical —S(O)R⁸³ where R83 is a C1-C8 alkyl group as defined herein. substituted with halo, substituted or unsubstituted amino, or hydroxy.

'Cycloalkylsulfinyl' refers to a radical —S(O)R84 where R^{84} is a C_3 - C_{10} cycloalkyl or group as defined herein. Representative examples include, but are not limited to, cyclopropylsulfinyl, cyclohexylsulfinyl, and cyclopentylsulfinyl. Exemplary 'cycloalkylsulfinyl' groups are S(O)— 15 C_3 - C_{10} cycloalkyl.

'Substituted cycloalkylsulfinyl' refers to the group -S(O)R⁸⁵ where R⁸⁵ is a C₃-C₁₀ cycloalkyl, substituted with halo, substituted or unsubstituted amino, or hydroxy.

'Arylsulfinyl' refers to a radical —S(O)R⁸⁶ where R⁸⁶ is 20 a C_6 - C_{10} aryl group as defined herein.

'Heteroarylsulfinyl' refers to a radical — $S(O)R^{87}$ where R^{87} is a 5-10 membered heteroaryl group as defined herein. 'Substituted sulfonyl' refers to the group $-S(O)_2R^{88}$, wherein R⁸⁸ is selected from:

 $\rm C_1\text{-}C_8$ alkyl, $\rm C_3\text{-}C_{10}$ cycloalkyl, 4-10 membered heterocycloalkyl, $\rm C_6\text{-}C_{10}$ aryl, aralkyl, 5-10 membered heterocycloalkyl, aralkyl, 5-10 membered heterocycloalkyl, aralkyl, aral eroaryl, and heteroaralkyl; or

C₁-C₈ alkyl substituted with halo, substituted or unsubstituted amino, or hydroxy; or

C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, or heteroaralkyl, each of which is substituted by unsubstituted C_1 - C_4 alkyl, halo, unsubstituted C_1 - C_4 alkoxy, unsubstituted C_1 - C_4 haloalkyl, unsubstituted C_1 - C_2 haloalkyl, unsubstituted C_1 - C_2 hydroxyalkyl, or unsubstituted C1-C4 haloalkoxy or hydroxy.

Exemplary 'substituted sulfonyl' groups are —S(O)₂— $(C_1-C_8 \text{ alkyl})$ and $-S(O)_2$ $-(C_3-C_{10} \text{ cycloalkyl})$, $-S(O)_2$ — $(CH_2)_t$ $(C_6$ - C_{10} aryl), $-S(O)_2$ — $(CH_2)_t$ (5-10 40 heteroaryl), membered cycloalkyl), and —S(O)₂—(CH₂)_t(4-10 membered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C_1 - C_4 alkyl, 45 halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C1-C4 hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy. The term substituted sulfonyl includes the groups alkylsulfonyl, substituted alkylsulfonyl, cycloalkylsulfonyl, substituted cycloalkylsulfonyl, 50 arylsulfonyl and heteroarylsulfonyl.

'Alkylsulfonyl' refers to a radical —S(O)₂R⁸⁹ where R⁸⁹ is an C₁-C₈ alkyl group as defined herein. Representative examples include, but are not limited to, methylsulfonyl, ethylsulfonyl, propylsulfonyl and butylsulfonyl.

'Substituted Alkylsulfonyl' refers to a radical —S(O)₂R⁹⁰ where R⁹⁰ is an C₁-C₈ alkyl group as defined herein, substituted with halo, substituted or unsubstituted amino, or

'Cycloalkylsulfonyl' refers to a radical —S(O)₂R⁹¹ where 60 R⁹¹ is a C₃-C₁₀ cycloalkyl or group as defined herein. Representative examples include, but are not limited to, cyclopropylsulfonyl, cyclohexylsulfonyl, and cyclopentylsulfonyl.

'Substituted cycloalkylsulfonyl' refers to the group 65 $S(O)_2R^{92}$ where R^{92} is a C_3 - C_{10} cycloalkyl, substituted with halo, substituted or unsubstituted amino, or hydroxy.

20

'Arylsulfonyl' refers to a radical —S(O)₂R⁹³ where R⁹³ is an C₆-C₁₀ aryl group as defined herein.

'Heteroarylsulfonyl' refers to a radical — $S(O)_2R^{94}$ where $\ensuremath{R^{94}}$ is an 5-10 membered heteroaryl group as defined herein. 'Sulfo' or 'sulfonic acid' refers to a radical such as

'Substituted sulfo' or 'sulfonic acid ester' refers to the group $-S(O)_2OR^{95}$, wherein R^{95} is selected from:

C₁-C₈ alkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl; or

C₁-C₈ alkyl substituted with halo, substituted or unsubstituted amino, or hydroxy; or

C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, or heteroaralkyl, each of which is substituted by unsubstituted C₁-C₄ alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C1-C4 haloalkyl, unsubstituted C1-C4 hydroxyalkyl, or unsubstituted C1-C4 haloalkoxy or hydroxy.

Exemplary 'Substituted sulfo' or 'sulfonic acid ester' groups are $-S(O)_2-O-(C_1-C_8 \text{ alkyl})$ and $-S(O)_2-O (C_3-C_{10} \text{ cycloalkyl}), -S(O)_2-O-(CH_2)_t(C_6-C_{10} \text{ aryl}),$ $-S(O)_2$ —O— $(CH_2)_t$ (5-10 membered heteroaryl), $-S(O)_2$ —O— $(CH_2)_t(C_3$ -O membered heteroary O membered O method O membered O mem O—(CH₂),(4-10 membered heterocycloalkyl), wherein t is an integer from 0 to 4 and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl groups present, may themselves be substituted by unsubstituted C1-C4 alkyl, halo, unsubstituted C₁-C₄ alkoxy, unsubstituted C₁-C₄ haloalkyl, unsubstituted C₁-C₄ hydroxyalkyl, or unsubstituted C₁-C₄ haloalkoxy or hydroxy.

'Thiol' refers to the group —SH.

alkyl, C₃-C₁₀ cycloalkyl, 4-10 membered heterocycloalkyl, C₆-C₁₀ aryl, aralkyl, 5-10 membered heteroaryl, and heteroaralkyl, as defined herein; or where two R⁹⁶ groups, when attached to the same N, are joined to form an alkylene group.

'Bicycloaryl' refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent bicycloaromatic ring system. Typical bicycloaryl groups include, but are not limited to, groups derived from indane, indene, naphthalene, tetrahydronaphthalene, and the like. Particularly, an aryl group comprises from 8 to 11 carbon atoms.

'Bicvcloheteroarvl' refers to a monovalent bicvcloheteroaromatic group derived by the removal of one hydrogen atom from a single atom of a parent bicycloheteroaromatic ring system. Typical bicycloheteroaryl groups include, but are not limited to, groups derived from benzofuran, benzimidazole, benzindazole, benzdioxane, chromene, chromane, cinnoline, phthalazine, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, benzothiazole, benzoxazole, naphthyridine, benzoxadiazole, pteridine, purine, benzopyran, benzpyrazine, pyriquinazoline, quinoline, dopyrimidine, quinoxaline, benzomorphan, tetrahydroisoquinoline, tetrahydroquinoline, and the like. Preferably, the bicycloheteroaryl group is between 9-11 membered bicycloheteroaryl, with 5-10 membered heteroaryl being particularly preferred. Particular bicycloheteroaryl groups are those derived from benzothiophene, benzofuran, benzothiazole, indole, quinoline, isoquinoline, benzimidazole, benzoxazole and benzdioxane.

'Compounds of the present invention', and equivalent expressions, are meant to embrace the compounds as here-

inbefore described, in particular compounds according to any of the formulae herein recited and/or described, which expression includes the prodrugs, the pharmaceutically acceptable salts, and the solvates, e.g., hydrates, where the context so permits. Similarly, reference to intermediates, 5 whether or not they themselves are claimed, is meant to embrace their salts, and solvates, where the context so permits.

'Cycloalkylalkyl' refers to a radical in which a cycloalkyl group is substituted for a hydrogen atom of an alkyl group. 10 Typical cycloalkylalkyl groups include, but are not limited to, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cycloheptylmethyl, cyclopentylmethyl, cyclopropylethyl, cyclobutylethyl, cyclopentylethyl, cyclohexylethyl, cycloheptylethyl, and cyclooctylethyl, and 15 the like.

'Heterocycloalkylalkyl' refers to a radical in which a heterocycloalkyl group is substituted for a hydrogen atom of an alkyl group. Typical heterocycloalkylalkyl groups include, but are not limited to, pyrrolidinylmethyl, piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyrrolidinylethyl, piperidinylethyl, piperazinylethyl, morpholinylethyl, and the like.

'Cycloalkenyl' refers to cyclic hydrocarbyl groups having from 3 to 10 carbon atoms and having a single cyclic ring or 25 multiple condensed rings, including fused and bridged ring systems and having at least one and particularly from 1 to 2 sites of olefinic unsaturation. Such cycloalkenyl groups include, by way of example, single ring structures such as cyclohexenyl, cyclopentenyl, cyclopropenyl, and the like. 30

'Substituted cycloalkenyl' refers to those groups recited in the definition of "substituted" herein, and particularly refers to a cycloalkenyl group having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, 35 acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, substituted cycloalkyl, halogen, hydroxyl, keto, nitro, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S (O)—, aryl-S(O)—, alkyl-S(O)2— and aryl-S(O)2—.

'Fused Cycloalkenyl' refers to a cycloalkenyl having two of its ring carbon atoms in common with a second aliphatic or aromatic ring and having its olefinic unsaturation located 45 to impart aromaticity to the cycloalkenyl ring.

'Ethenyl" refers to substituted or unsubstituted —(C=C)—.

'Ethylene' refers to substituted or unsubstituted —(C—C)—.

'Ethynyl' refers to

'Hydrogen bond donor' group refers to a group containing O—H, or N—H functionality. Examples of 'hydrogen bond donor' groups include —OH, —NH₂, and —NH—R⁹⁷ and wherein R⁹⁷ is alkyl, acyl, cycloalkyl, aryl, or heteroaryl. 55

'Dihydroxyphosphoryl' refers to the radical —PO(OH)₂.

'Substituted dihydroxyphosphoryl' refers to those groups recited in the definition of "substituted" herein, and particularly refers to a dihydroxyphosphoryl radical wherein one or both of the hydroxyl groups are substituted. Suitable substituents are described in detail below.

'Aminohydroxyphosphoryl' refers to the radical —PO $(OH)NH_2$.

"Substituted aminohydroxyphosphoryl" refers to those groups recited in the definition of "substituted" herein, and 65 particularly refers to an aminohydroxyphosphoryl wherein the amino group is substituted with one or two substituents.

22

Suitable substituents are described in detail below. In certain embodiments, the hydroxyl group can also be substituted.

'Nitrogen-Containing Heterocycloalkyl' group means a 4 to 7 membered non-aromatic cyclic group containing at least one nitrogen atom, for example, but without limitation, morpholine, piperidine (e.g. 2-piperidinyl, 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 2-pyrrolidinyl and 3-pyrrolidinyl), azetidine, pyrrolidone, imidazoline, imidazolidinone, 2-pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine. Particular examples include azetidine, piperidone and piperazone.

'Thioketo' refers to the group —S.

One having ordinary skill in the art of organic synthesis will recognize that the maximum number of heteroatoms in a stable, chemically feasible heterocyclic ring, whether it is aromatic or non aromatic, is determined by the size of the ring, the degree of unsaturation and the valence of the heteroatoms. In general, a heterocyclic ring may have one to four heteroatoms so long as the heteroaromatic ring is chemically feasible and stable.

'Pharmaceutically acceptable' means approved or approvable by a regulatory agency of the Federal or a state government or the corresponding agency in countries other than the United States, or that is listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeia for use in animals, and more particularly, in humans.

'Pharmaceutically acceptable salt' refers to a salt of a compound of the invention that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. In particular, such salts are nontoxic may be inorganic or organic acid addition salts and base addition salts. Specifically, such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an 50 acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine and the like. Salts further include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the compound contains a basic functionality, salts of non toxic organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like. The term "pharmaceutically acceptable cation" refers to an acceptable cationic counterion of an acidic functional group. Such cations are exemplified by sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium cations, and the like.

'Pharmaceutically acceptable vehicle' refers to a diluent, adjuvant, excipient or carrier with which a compound of the invention is administered.

'Prodrugs' refers to compounds, including derivatives of the compounds of the invention, which have cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo. Such examples include, but are ont limited to, choline ester derivatives and the like, N-alkylmorpholine esters and the like.

'Solvate' refers to forms of the compound that are associated with a solvent, usually by a solvolysis reaction. This physical association includes hydrogen bonding. Conventional solvents include water, ethanol, acetic acid and the like. The compounds of the invention may be prepared e.g. in crystalline form and may be solvated or hydrated. Suitable solvates include pharmaceutically acceptable solvates, such as hydrates, and further include both stoichiometric solvates and non-stoichiometric solvates. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. 'Solvate' encompasses both solution-phase and isolable solvates. Representative solvates include hydrates, ethanolates and methanolates.

'Subject' includes humans. The terms 'human', 'patient' and 'subject' are used interchangeably herein.

'Therapeutically effective amount' means the amount of a 25 compound that, when administered to a subject for treating a disease, is sufficient to effect such treatment for the disease. The "therapeutically effective amount" can vary depending on the compound, the disease and its severity, and the age, weight, etc., of the subject to be treated.

'Preventing' or 'prevention' refers to a reduction in risk of acquiring or developing a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a subject that may be exposed to a disease-causing agent, or predisposed to the disease in advance of 35 disease onset.

The term 'prophylaxis' is related to 'prevention', and refers to a measure or procedure the purpose of which is to prevent, rather than to treat or cure a disease. Non-limiting examples of prophylactic measures may include the administration of vaccines; the administration of low molecular weight heparin to hospital patients at risk for thrombosis due, for example, to immobilization; and the administration of an anti-malarial agent such as chloroquine, in advance of a visit to a geographical region where malaria is endemic or 45 the risk of contracting malaria is high.

'Treating' or 'treatment' of any disease or disorder refers, in one embodiment, to ameliorating the disease or disorder (i.e., arresting the disease or reducing the manifestation, extent or severity of at least one of the clinical symptoms 50 thereof). In another embodiment 'treating' or 'treatment' refers to ameliorating at least one physical parameter, which may not be discernible by the subject. In yet another embodiment, 'treating' or 'treatment' refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In a further embodiment, "treating" or "treatment" relates to slowing the progression of the disease.

'Compounds of the present invention', and equivalent 60 expressions, are meant to embrace compounds of the Formula(e) as hereinbefore described, which expression includes the prodrugs, the pharmaceutically acceptable salts, and the solvates, e.g., hydrates, where the context so permits. Similarly, reference to intermediates, whether or not 65 they themselves are claimed, is meant to embrace their salts, and solvates, where the context so permits.

24

When ranges are referred to herein, for example but without limitation, C_1 - C_8 alkyl, the citation of a range should be considered a representation of each member of said range.

Other derivatives of the compounds of this invention have activity in both their acid and acid derivative forms, but in the acid sensitive form often offers advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well know to practitioners of the art, such as, for example, esters prepared by reaction of the parent acid with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a substituted or unsubstituted amine, or acid anhydrides, or mixed anhydrides. Simple aliphatic or aromatic esters, amides and anhydrides derived from acidic groups pendant on the compounds of this invention are particular prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkylesters. Particularly the C_1 to C_8 alkyl, $C_2\text{-}C_8$ alkenyl, aryl, $C7\text{-}C_{12}$ substituted aryl, and C7-C12 arylalkyl esters of the compounds of the invention.

As used herein, the term 'isotopic variant' refers to a compound that contains unnatural proportions of isotopes at one or more of the atoms that constitute such compound. For example, an 'isotopic variant' of a compound can contain one or more non-radioactive isotopes, such as for example, deuterium (²H or D), carbon-13 (¹³C), nitrogen-15 (¹⁵N), or the like. It will be understood that, in a compound where such isotopic substitution is made, the following atoms, where present, may vary, so that for example, any hydrogen may be ²H/D, any carbon may be ¹³C, or any nitrogen may be ¹⁵N, and that the presence and placement of such atoms may be determined within the skill of the art. Likewise, the invention may include the preparation of isotopic variants with radioisotopes, in the instance for example, where the resulting compounds may be used for drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, i.e. ³H, and carbon-14, i.e. ¹⁴C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection. Further, compounds may be prepared that are substituted with positron emitting isotopes, such as ¹¹C, ¹⁸F, ¹⁵O and ¹³N, and would be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy.

All isotopic variants of the compounds provided herein, radioactive or not, are intended to be encompassed within the scope of the invention.

It is also to be understood that compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed 'isomers'. Isomers that differ in the arrangement of their atoms in space are termed 'stereoisomers'.

Stereoisomers that are not mirror images of one another are termed 'diastereomers' and those that are non-superimposable mirror images of each other are termed 'enantiomers'. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (-)-isomers respectively). A chiral compound can exist as either individual enantiomer or

as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a 'racemic mixture'.

'Tautomers' refer to compounds that are interchangeable forms of a particular compound structure, and that vary in the displacement of hydrogen atoms and electrons. Thus, two structures may be in equilibrium through the movement of π electrons and an atom (usually H). For example, enols and ketones are tautomers because they are rapidly interconverted by treatment with either acid or base. Another example of tautomerism is the aci- and nitro- forms of phenylnitromethane, that are likewise formed by treatment with acid or base.

Tautomeric forms may be relevant to the attainment of the optimal chemical reactivity and biological activity of a 15 compound of interest.

As used herein a pure enantiomeric compound is substantially free from other enantiomers or stereoisomers of the compound (i.e., in enantiomeric excess). In other words, an "S" form of the compound is substantially free from the "R" form of the compound and is, thus, in enantiomeric excess of the "R" form. The term "enantiomerically pure" or "pure enantiomer" denotes that the compound comprises more than 75% by weight, more than 80% by weight, more than 85% by weight, more than 90% by weight, more than 91% by weight, more than 92% by weight, more than 93% by weight, more than 94% by weight, more than 95% by weight, more than 96% by weight, more than 97% by weight, more than 98% by weight, more than 98.5% by weight, more than 99% by weight, more than 99.2% by 30 weight, more than 99.5% by weight, more than 99.6% by weight, more than 99.7% by weight, more than 99.8% by weight or more than 99.9% by weight, of the enantiomer. In certain embodiments, the weights are based upon total weight of all enantiomers or stereoisomers of the compound. 35

As used herein and unless otherwise indicated, the term "enantiomerically pure R-compound" refers to at least about 80% by weight R-compound and at most about 20% by weight S-compound, at least about 90% by weight R-compound and at most about 10% by weight S-compound, at least about 95% by weight R-compound and at most about 5% by weight S-compound, at least about 99% by weight R-compound and at most about 1% by weight S-compound, at least about 99.9% by weight R-compound or at most about 0.1% by weight S-compound. In certain embodiments, the weights are based upon total weight of compound.

As used herein and unless otherwise indicated, the term "enantiomerically pure S-compound" or "S-compound" refers to at least about 80% by weight S-compound and at 50 most about 20% by weight R-compound, at least about 90% by weight S-compound and at most about 10% by weight R-compound, at least about 95% by weight S-compound and at most about 5% by weight R-compound, at least about 99% by weight S-compound and at most about 1% by weight R-compound or at least about 99.9% by weight S-compound and at most about 0.1% by weight R-compound. In certain embodiments, the weights are based upon total weight of compound.

In the compositions provided herein, an enantiomerically pure compound or a pharmaceutically acceptable salt, solvate, hydrate or prodrug thereof can be present with other active or inactive ingredients. For example, a pharmaceutical composition comprising enantiomerically pure R-compound can comprise, for example, about 90% excipient and about 10% enantiomerically pure R-compound. In certain

embodiments, the enantiomerically pure R-compound in such compositions can, for example, comprise, at least about 95% by weight R-compound and at most about 5% by weight S-compound, by total weight of the compound. For example, a pharmaceutical composition comprising enantiomerically pure S-compound can comprise, for example, about 90% excipient and about 10% enantiomerically pure S-compound. In certain embodiments, the enantiomerically pure S-compound in such compositions can, for example, comprise, at least about 95% by weight S-compound and at most about 5% by weight R-compound, by total weight of the compound. In certain embodiments, the active ingredient can be formulated with little or no excipient or carrier.

The compounds of this invention may possess one or more asymmetric centers; such compounds can therefore be produced as individual (R)- or (S)-stereoisomers or as mixtures thereof.

Unless indicated otherwise, the description or naming of a particular compound in the specification and claims is intended to include both individual enantiomers and mixtures, racemic or otherwise, thereof. The methods for the determination of stereochemistry and the separation of stereoisomers are well-known in the art.

The Compounds

The present invention provides a method for preventing, treating or ameliorating in a mammal a disease or condition that is causally related to the aberrant activity of the Wnt signaling pathway in vivo, which comprises administering to the mammal an effective disease-treating or condition-treating amount of a compound according to formula I:

$$A = \prod_{\substack{x \in \mathbb{N} \\ O}} \mathbb{R}^3$$

wherein A is A^1 , A^2 or A^3 :

$$\begin{array}{c|c} & \mathbb{R}^{2a} & \mathbb{R}^{2b} & \mathbb{R}^{2c} & \mathbb{R}^{2d} \\ & \mathbb{R}^{1} & \mathbb{R}^{2c} & \mathbb{R}^{2d} \\ & \mathbb{R}^{1} & \mathbb{R}^{2c} & \mathbb{R}^{2d} \\ & \mathbb{R}^{1} & \mathbb{R}^{2c} & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} & \mathbb{R}^{2d} & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} & \mathbb{R}^{2d} \\ & \mathbb{R}^{2d} & \mathbb{R}^{2d} \\ &$$

A¹ is

$$R^2$$
 S
 N
 L^2
 S

15

60

A2 is

$$R^{2}$$
 R^{2a}
 R^{2b}
 N
 N
 N
 N

A³ is

x is 1, when A is A^1 or A^2 ; or x is 0, when A is A^3 ; L^1 is S, SO or SO₂;

m1 is 1, 2 or 3; n is 1, 2, 3, 4 or 5;

 L^2 is substituted or unsubstituted C_1 - C_7 alkylene or heteroalkylene;

each R^1 , R^{2a} , R^{2b} , R^{2c} , and R^{2d} is independently selected from hydrogen, halo, and substituted or unsubstituted C_1 - C_6 alkyl;

R² is selected from aryl or heteroaryl, unsubstituted or substituted with one or more R⁴:

R³ is hydroxy, alkoxy, substituted or unsubstituted amino or cycloheteroalkyl; or when A is A³, R³ is R⁵;

each R⁴ and R^{5a} is independently selected from H, alkyl, substituted alkyl, acyl, substituted acyl, substituted or unsubstituted acylamino, substituted or unsubstituted alkylamino, substituted or unsubstituted alkythio, substituted or unsubstituted alkoxy, alkoxycarbonyl, sub- 35 stituted alkoxycarbonyl, substituted or unsubstituted alkylarylamino, arylalkyloxy, substituted arylalkyloxy, amino, aryl, substituted aryl, arylalkyl, substituted or unsubstituted sulfonyl, substituted or unsubstituted sulfinyl, substituted or unsubstituted sulfanyl, substi- 40 tuted or unsubstituted aminosulfonyl, substituted or unsubstituted arylsulfonyl, azido, carboxy, substituted or unsubstituted carbamoyl, cyano, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloheteroalkyl, substituted or unsubstituted dialky- 45 lamino, halo, heteroaryloxy, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroalkyl, hydroxy, nitro, and thiol; and

R⁵ is selected from aryl or heteroaryl, unsubstituted or substituted with one or more R^{5a}; or a pharmaceutically ⁵⁰ acceptable salt, solvate or prodrug thereof;

and stereoisomers, isotopic variants and tautomers thereof.

In one particular embodiment, with respect to compounds $\ _{55}$ of formula I, A^1 is

$$(R^4)_n$$

$$N$$

$$R^{2a}$$

$$R^{2b}$$

$$R^{2c}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2d}$$

In one particular embodiment, with respect to compounds of formula I, \mathbf{A}^2 is

$$R^2$$
 N
 N
 L^2

In one particular embodiment, with respect to compounds of formula I, \mathbf{A}^3 is

$$\mathbb{R}^{2b}$$
 \mathbb{R}^{2a}
 \mathbb{R}^{2b}
 \mathbb{R}^{2b}
 \mathbb{R}^{2b}

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIa:

$$(\mathbb{R}^4)_n$$

$$\mathbb{R}^{2a} \mathbb{R}^{2b} \mathbb{R}^{2c} \mathbb{R}^{2d}$$

$$\mathbb{R}^3;$$

$$\mathbb{R}^3;$$

and wherein L^1 , m1, n, R^1 , R^{2a} , R^{2b} , R^{2c} , R^{2d} , R^2 , R^3 , and R^4 are as described for formula I.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIb:

$$R^2$$
 N
 N
 R^3 ;

and wherein L^2 , R^1 , R^2 , R^3 , and R^4 are as described for formula I.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIc:

$$\mathbb{R}^2$$
 \mathbb{R}^{2a}
 \mathbb{R}^{2b}
 \mathbb{R}^{2b}
 \mathbb{R}^5 ;

and wherein R^{2a}, R^{2b}, R², R⁴, and R⁵ are as described for formula.

In one particular embodiment, with respect to compounds of formula IIa; L^1 is S.

In one particular embodiment, with respect to compounds of formula IIa; L^1 is SO or SO₂.

In one particular embodiment, with respect to compounds of formula IIa or IIc; each of R^{2a} and R^{2b} is H.

In one particular embodiment, with respect to compounds of formula IIa or IIc; one of \mathbb{R}^{2a} and \mathbb{R}^{2b} is independently Me and the other is H.

In one particular embodiment, with respect to compounds of formula Ia or IIc; each of R^{2a} and R^{2b} is Me.

In one particular embodiment with respect to compounds of formula IIa; the subscript m1 is 1 or 2; and each of \mathbb{R}^{2c} and \mathbb{R}^{2d} is H.

In one particular embodiment, with respect to compounds of formula IIa; the subscript m1 is 1 or 2; and each of R^{2b} and R^{2d} is independently Me and the other is H.

In one particular embodiment, with respect to compounds of formula IIa; the subscript m1 is 1 or 2; and each of $R^{2c}_{\ \ 20}$ and R^{2d} is Me.

In one particular embodiment, with respect to compounds of formula IIa; L^1 is S; the subscript m1 is 1; and each of R^{2a} , R^{2b} , R^2 and R^{2d} is H.

In one particular embodiment, with respect to compounds $\,^{25}$ of formula IIb; L 2 is —CH $_2$ —, —CH $_2$ —CH $_2$ —, —CH $_2$ —CH $_2$ —.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIc.

In one particular embodiment, with respect to compounds of formula IIb or IIc, R^2 is phenyl, unsubstituted or substituted with one or more R^4 .

In one particular embodiment, with respect to compounds of formula IIb or IIc, R^2 is heteroaryl, unsubstituted or 35 substituted with one or more R^4 .

In one particular embodiment, with respect to compounds of formula IIb or IIc, \mathbb{R}^2 is pyridyl, furanyl, thiophenyl, or pyrrolidinyl, unsubstituted or substituted with one or more \mathbb{R}^4

In one particular embodiment, with respect to compounds of formula IIc, R^5 is phenyl, unsubstituted or substituted with one or more R^4 .

In one particular embodiment, with respect to compounds of formula IIc, R^5 is heteroaryl, unsubstituted or substituted 45 with one or more R^4 .

In one particular embodiment, with respect to compounds of formula IIc, R⁵ is pyridyl, furanyl, thiophenyl, or pyrrolidinyl, unsubstituted or substituted with one or more R⁴.

In one particular embodiment, with respect to compounds 50 of formula IIa or IIb; R^1 is H or substituted or unsubstituted C_1 - C_6 alkyl.

In one particular embodiment, with respect to compounds of formula IIa or lib; R^1 is halo.

In one particular embodiment, with respect to compounds 55 of formula IIa or IIb: \mathbb{R}^1 is Me.

In one particular embodiment, with respect to compounds of formula IIa or IIb; R^3 is OH.

In one particular embodiment, with respect to compounds of formula IIa or IIb; R³ is alkoxy.

In one particular embodiment, with respect to compounds of formula IIa or IIb; R³ is substituted or unsubstituted amino.

In one particular embodiment, with respect to compounds of formula IIa or IIb; R^3 is $NR^{3a}R^{3b}$; and each R^{3a} and R^{3b} is independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substi-

tuted or unsubstituted aryl, and substituted or unsubstituted heteroaryl; or R^{3a} and R^{3b} join together to form a cycloheteroalkyl heteroaryl ring.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formulae IIIa, IIIb, IIIc, IIId, IIIe, or IIIf:

$$(\mathbb{R}^4)_n$$

$$S$$

$$O$$

$$O$$

$$O$$

$$OR^{3a},$$

$$(\mathbb{R}^4)_n$$

$$[-N]$$

$$S$$

$$N$$

$$S$$

$$O$$

$$OR^{2a}$$

$$(R^4)_n$$

$$S \longrightarrow N$$

$$NR^{3a}R^{3b},$$

20

25

IIIe

-continued

$$(\mathbb{R}^4)_n$$
 \mathbb{S}
 \mathbb{N}
 \mathbb

wherein n and R^4 are as described for formula I; R^{3a} and R^{3b} are as described above; and m is 0 or 1.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IVa, IVb, or IVc:

wherein n, R^4 , and R^5 as described for formula I; and R^{3a} and R^{3b} as described above.

In one particular embodiment, with respect to compounds of formula IIa-IVc, each of ${\bf R}^4$ is H.

In one particular embodiment, with respect to compounds of formula IIa-IVc, n, when present, is 1; and R⁴ is alkyl, alkoxy, haloalkyl, or halo.

In one particular embodiment, with respect to compounds of formula IIa-IVc, n, when present, is 1 or 2; and R⁴ is Me, Et, i-Pr, OMe, OEt, O-i-Pr, Cl, or F.

In one particular embodiment, with respect to compounds of formula IIa-IVc, n, when present, is 1 or 2; and R⁴ is Me, 10 OMe, SMe, or Et.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formulae Va, Vb, Vc, Vd, Ve or Vf:

MeO
$$N_{\rm MeO}$$
 $N_{\rm R}^{3a}$ $N_{\rm R}^{3b}$,

$$Vc$$

$$S \longrightarrow N$$

$$S \longrightarrow N$$

$$S \longrightarrow N$$

$$O$$

$$OR^{3a},$$

Vf

20

-continued

wherein R^{3a} and R^{3b} are as described above; and m is 0 $_{25}$ or 1.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, R^{3a} is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, $R^{3\alpha}$ is ³⁰ substituted or unsubstituted alkyl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, R^{3a} is substituted or unsubstituted benzyl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, R^{3a} is substituted or unsubstituted phenethyl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, R^{3a} is substituted or unsubstituted cycloalkyl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf, \mathbb{R}^{3a} is cyclopropyl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; R^{3b} is substituted or unsubstituted heteroaryl.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; R^{3b} is substituted or unsubstituted heterocycloalkyl.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; and each of R^{3a} and R^{3b} is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of R^{3a} and 55 R^{3b} is substituted or unsubstituted alkyl and the other is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of R^{3a} and R^{3b} is substituted or unsubstituted benzyl and the other is H.

In one particular embodiment, with respect to compounds 60 of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of \mathbb{R}^{3a} and \mathbb{R}^{3b} is substituted or unsubstituted phenethyl and the other is H

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of \mathbb{R}^{3a} and 65 \mathbb{R}^{3b} is substituted or unsubstituted cycloalkyl and the other is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of R^{3a} and R^{3b} is substituted or unsubstituted cyclopropyl and the other is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; one of R^{3a} and R^{3b} is substituted or unsubstituted cyclopentyl or cyclobutyl and the other is H.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; R^{3a} and R^{3b} join together to form a cycloheteroalkyl heteroaryl ring.

In one particular embodiment, with respect to compounds of formula IIIb, IIId, IIIf, IVa, Vb, Vd, or Vf; NR^{3a}R^{3b} is:

and wherein R^{3c} is H or alkyl.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula VIa, VIb, or VIc:

20

VIIb

40

45

50

55

-continued

and m is 0 or 1.

In one particular embodiment, with respect to compounds of formula IIIa-VIc, m, when present, is 0.

In one particular embodiment, with respect to compounds of formula IIIa-VIc, m, when present, is 1.

In one particular embodiment, with respect to compounds of formula IIIa-VIc, the compound is according to formula VIIa, VIIb, VIIc or VIId:

$$\begin{array}{c} 25 \\ \text{VIIa} \end{array}$$

$$Et \longrightarrow \bigcup_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{N} \bigvee_{R^{3b},}$$

Mes
$$\stackrel{\text{N}}{=}$$
 $\stackrel{\text{N}}{=}$ $\stackrel{\text{N}}{=}$

MeO
$$\stackrel{N}{\longrightarrow}$$
 $\stackrel{H}{\longrightarrow}$ R^{3b} .

wherein R^{3b} is as described above.

In one particular embodiment, with respect to compounds of formula VIIa, VIIb, VIIc or VIId; R^{3b} is substituted or unsubstituted cycloalkyl, phenyl, benzyl, or phenethyl.

In one particular embodiment, with respect to compounds of formula VIIa, VIIb, VIIc or VIId; R^{3b} is substituted or unsubstituted heteroaryl, or heterocycloalkyl.

In one particular embodiment, with respect to compounds $_{65}$ of formula I, the compound is according to formula VIIIa, VIIIb, VIIIc, or VIIId:

VIIIa

Note that
$$N$$
 and N and N are N and N are N are N and N are N are N and N are N and N are N and N are N and N are N are N and N are N are N are N are N and N are N are N are N are N are N and N are N are N and N are N and N are N

$$Et \longrightarrow \bigcup_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{O} \bigvee_{N} \bigvee_{VIIIc} \bigvee_{VIIIIc} \bigvee_{N} \bigvee$$

wherein Cy is

and wherein R^{3c} is H or alkyl.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula IXa, IXb, IXc or IXd:

$$MeO \longrightarrow N \longrightarrow S \longrightarrow N \longrightarrow N$$

$$MeO \longrightarrow Me$$

$$O \longrightarrow Me$$

Xb 35

Xc

50

IXb

-continued

-continued

XIb

XId

XIIc

$$\text{Et} \longrightarrow \bigvee_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{N}$$

$$MeO \longrightarrow N \longrightarrow S \longrightarrow N \longrightarrow N$$

$$MeO \longrightarrow N \longrightarrow N$$

$$MeO \longrightarrow N$$

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula Xa, Xb, Xc or Xd: 25

$$Me \longrightarrow \bigcup_{O} \bigvee_{Me} \bigvee_{S} \bigvee_{O} \bigvee_{Ph,}$$

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula XIa, XIb, XIc or XId:

$$Me \xrightarrow{N} S \xrightarrow{H} N \\ Ph,$$

$$\text{Et} \underbrace{\hspace{1cm} \bigvee_{O}^{N} \bigvee_{Me}^{H} \bigvee_{O}^{N} \bigvee_{Ph,}^{H}}_{Ph,}$$

$$\text{MeO} \longrightarrow \text{N} \text{N} \text{S} \xrightarrow{\text{H}} \text{N} \text{N} \text{Ph.}$$

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula XIIa, XIIb, XIIc or XIId:

-continued

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula XIIIa, XIIIb, XIIIc or XIIId:

XIIIa
20

Me

 N
 $^$

MeS
$$\longrightarrow$$
 N \longrightarrow N

$$MeO \longrightarrow N \longrightarrow S \longrightarrow N \longrightarrow 0$$

In one particular embodiment, with respect to compounds $\,_{65}$ of formula I, the compound is according to formula XIVa, or XIVb:

$$(\mathbb{R}^4)_n \xrightarrow{\qquad \qquad Me \qquad \qquad Me \qquad \qquad } O \qquad \qquad (\mathbb{R}^{5a})_t \quad \text{or} \qquad \qquad XIVb$$

wherein each R^4 and R^{5a} is independently selected from alkyl, alkoxy, haloalkyl, halo, hydroxy, carboxy, carbalkoxy, or nitro; and each n and t is independently 0, 1 or 2.

In one particular embodiment, with respect to compounds of formula XIVa, or XIVb, each R⁴ is H.

In one particular embodiment, with respect to compounds of formula XIVa, or XIVb, n is 1 or 2; and each R^4 is independently Me, Et, i-Pr, OMe, OEt, O-i-Pr, Cl, or F.

In one particular embodiment, with respect to compounds of formula XIVa, or XIVb, each R^{5a} is H.

In one particular embodiment, with respect to compounds of formula XIVa, or XIVb, t is 1 or 2; and each R^{5a} is independently Me, Et, i-Pr, OMe, OEt, O-i-Pr, Cl, or F.

In one particular embodiment, with respect to compounds of formula I, the compound is according to formula XVa or XVb:

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 1.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 2.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 3.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 4.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 5.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 6.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 7.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 8.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 9.

In one particular embodiment, with respect to compounds $_{20}$ of formula I, the compound is selected from Table 10.

In one particular embodiment, with respect to compounds of formula I, the compound is selected from Table 11.

In certain aspects, the present invention provides prodrugs and derivatives of the compounds according to the formulae 25 above. Prodrugs are derivatives of the compounds of the invention, which have metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention, which are pharmaceutically active, in vivo. Such examples include, but are not limited 30 to, choline ester derivatives and the like, N-alkylmorpholine esters and the like.

Other derivatives of the compounds of this invention have activity in both their acid and acid derivative forms, but the acid sensitive form often offers advantages of solubility, 35 tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well know to practitioners of the art, such as, for example, esters prepared by reaction of the parent acid with 40 a suitable alcohol, or amides prepared by reaction of the parent acid compound with a substituted or unsubstituted amine, or acid anhydrides, or mixed anhydrides. Simple aliphatic or aromatic esters, amides and anhydrides derived from acidic groups pendant on the compounds of this 45 invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkylesters. Preferred are the C1 to C8 alkyl, C2-C8 alkenyl, aryl, C7-C12 substituted aryl, and C₇-C₁₂ arylalkyl esters of the compounds of 50 the invention.

Pharmaceutical Compositions

When employed as pharmaceuticals, the compounds of 55 this invention are typically administered in the form of a pharmaceutical composition. Such compositions can be prepared in a manner well known in the pharmaceutical art and comprise at least one active compound.

Generally, the compounds of this invention are administered in a pharmaceutically effective amount. The amount of the compound actually administered will typically be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound-administered, 65 the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like. 42

The pharmaceutical compositions of this invention can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. Depending on the intended route of delivery, the compounds of this invention are preferably formulated as either injectable or oral compositions or as salves, as lotions or as patches all for transdermal administration.

The compositions for oral administration can take the form of bulk liquid solutions or suspensions, or bulk pow-10 ders. More commonly, however, the compositions are presented in unit dosage forms to facilitate accurate dosing. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient. Typical unit dosage forms include prefilled, premeasured ampules or syringes of the liquid compositions or pills, tablets, capsules or the like in the case of solid compositions. In such compositions, the furansulfonic acid compound is usually a minor component (from about 0.1 to about 50% by weight or preferably from about 1 to about 40% by weight) with the remainder being various vehicles or carriers and processing aids helpful for forming the desired dosing form.

Liquid forms suitable for oral administration may include a suitable aqueous or nonaqueous vehicle with buffers, suspending and dispensing agents, colorants, flavors and the like.

Solid forms may include, for example, any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

Injectable compositions are typically based upon injectable sterile saline or phosphate-buffered saline or other injectable carriers known in the art. As before, the active compound in such compositions is typically a minor component, often being from about 0.05 to 10% by weight with the remainder being the injectable carrier and the like.

Transdermal compositions are typically formulated as a topical ointment or cream containing the active ingredient(s), generally in an amount ranging from about 0.01 to about 20% by weight, preferably from about 0.1 to about 20% by weight, preferably from about 0.1 to about 10% by weight, and more preferably from about 0.5 to about 15% by weight. When formulated as a ointment, the active ingredients will typically be combined with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with, for example an oil-in-water cream base. Such transdermal formulations are well-known in the art and generally include additional ingredients to enhance the dermal penetration of stability of the active ingredients or the formulation. All such known transdermal formulations and ingredients are included within the scope of this invention.

The compounds of this invention can also be administered by a transdermal device. Accordingly, transdermal administration can be accomplished using a patch either of the reservoir or porous membrane type, or of a solid matrix variety.

The above-described components for orally administrable, injectable or topically administrable compositions are merely representative. Other materials as well as processing

techniques and the like are set forth in Part 8 of *Remington's Pharmaceutical Sciences*, 17th edition, 1985, Mack Publishing Company, Easton, Pa., which is incorporated herein by reference.

The compounds of this invention can also be administered in sustained release forms or from sustained release drug delivery systems. A description of representative sustained release materials can be found in *Remington's Pharmaceutical Sciences*.

The following formulation examples illustrate representative pharmaceutical compositions that may be prepared in accordance with this invention. The present invention, however, is not limited to the following pharmaceutical compositions.

Formulation 1—Tablets

A compound of the invention may be admixed as a dry powder with a dry gelatin binder in an approximate 1:2 weight ratio. A minor amount of magnesium stearate is added as a lubricant. The mixture is formed into 240-270 mg 20 tablets (80-90 mg of active amide compound per tablet) in a tablet press.

Formulation 2—Capsules

A compound of the invention may be admixed as a dry powder with a starch diluent in an approximate 1:1 weight ratio. The mixture is filled into 250 mg capsules (125 mg of active amide compound per capsule).

Formulation 3—Liquid

A compound of the invention (125 mg), sucrose (1.75 g) and xanthan gum (4 mg) may be blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of microcrystalline cellulose and sodium 35 carboxymethyl cellulose (11:89, 50 mg) in water. Sodium benzoate (10 mg), flavor, and color would then be diluted with water and added with stirring. Sufficient water is then added to produce a total volume of 5 mL.

Formulation 4—Tablets

A compound of the invention may be admixed as a dry powder with a dry gelatin binder in an approximate 1:2 weight ratio. A minor amount of magnesium stearate is added as a lubricant. The mixture is formed into 450-900 mg tablets (150-300 mg of active amide compound) in a tablet press.

Formulation 5—Injection

A compound of the invention may be dissolved or suspended in a buffered sterile saline injectable aqueous medium to a concentration of approximately 5 mg/ml.

Formulation 6—Topical

Stearyl alcohol (250 g) and a white petrolatum (250 g) may be melted at about 75° C. and then a mixture of a compound of the invention (50 g) methylparaben (0.25 g), propylparaben (0.15 g), sodium lauryl sulfate (10 g), and 60 propylene glycol (120 g) dissolved in water (about 370 g) is added and the resulting mixture is stirred until it congeals.

Methods of Treatment

The present compounds are used as therapeutic agents for the treatment of conditions in mammals that are causally 44

related or attributable to aberrant activity of the Wnt/wg signaling pathway. Accordingly, the compounds and pharmaceutical compositions of this invention find use as therapeutics for preventing and/or treating a variety of cancers and hyperproliferative conditions in mammals, including humans. Thus, and as stated earlier, the present invention includes within its scope, and extends to, the recited methods of treatment, as well as to the compounds for use in such methods, and for the preparation of medicaments useful for such methods.

In a method of treatment aspect, this invention provides a method of treating a mammal susceptible to or afflicted with a condition associated with cancer and/or a hyperproliferative disorder, which method comprises administering an effective amount of one or more of the pharmaceutical compositions just described.

In yet another method of treatment aspect, this invention provides a method of treating a mammal susceptible to or afflicted with a condition that gives rise to increased cellular proliferation or a transformed phenotype, or that relates to dysregulation of Wnt/wg signaling. The present oxazoles and thiazoles have use as anti-proliferative agents that reduce proliferative levels (potentially to normal levels for a particular cell type), and/or anti-transformed phenotype agents that restore, at least in part, normal phenotypic properties of a particular cell type. Accordingly, the present oxazoles and thiazoles have use for the treatment of cancers and hyperproliferative disorders relating to aberrant Wnt/wg signaling.

In additional method of treatment aspects, this invention provides methods of treating a mammal susceptible to or afflicted with a cancer causally related or attributable to aberrant activity of the Wnt/wg signaling pathway. Such cancers include, without limitation, those of the liver, colon, rectum, breast and skin. Such methods comprise administering an effective condition-treating or condition-preventing amount of one or more of the pharmaceutical compositions just described.

As a further aspect of the invention there is provided the present compounds for use as a pharmaceutical especially in the treatment or prevention of the aforementioned conditions and diseases. Also provided herein is the use of the present compounds in the manufacture of a medicament for the treatment or prevention of one of the aforementioned conditions and diseases.

Injection dose levels range from about 0.1 mg/kg/hour to at least 10 mg/kg/hour, all for from about 1 to about 120 hours and especially 24 to 96 hours. A preloading bolus of from about 0.1 mg/kg to about 10 mg/kg or more may also be administered to achieve adequate steady state levels. The maximum total dose is not expected to exceed about 2 g/day for a 40 to 80 kg human patient.

For the prevention and/or treatment of long-term conditions, such as psoriasis, the regimen for treatment usually stretches over many months or years so oral dosing is preferred for patient convenience and tolerance. Psoriasis, for example, has been linked to Wnt signaling. Several basic and clinical studies using patient samples revealed an increase in nuclear β -catenin staining in many psoriatic samples. It has been suggested that a sustained low-level increase in Wnt/ β -catenin signaling could be responsible for skin psoriatic lesions. With oral dosing, one to five and especially two to four and typically three oral doses per day are representative regimens. Using these dosing patterns, each dose provides from about 0.01 to about 20 mg/kg of the

60

compound of the invention, with preferred doses each providing from about 0.1 to about 10 mg/kg and especially about 1 to about 5 mg/kg.

Transdermal doses are generally selected to provide similar or lower blood levels than are achieved using injection 5

When used to prevent the onset of a hyperproliferative condition, the compounds of this invention will be administered to a patient at risk for developing the condition, typically on the advice and under the supervision of a physician, at the dosage levels described above. Patients at risk for developing a particular condition generally include those that have a family history of the condition, or those who have been identified by genetic testing or screening to be particularly susceptible to developing the condition.

The compounds of this invention can be administered as the sole active agent or they can be administered in combination with other agents, including other compounds that demonstrate the same or a similar therapeutic activity, and that are determined to safe and efficacious for such com- 20 bined administration.

General Synthetic Procedures

The compounds of this invention may be purchased from 25 various commercial sources or can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pres- 30 sures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.

Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. The choice of a suitable protecting group for a particular functional group as well as suitable conditions for 40 protection and deprotection are well known in the art. For example, numerous protecting groups, and their introduction and removal, are described in T. W. Greene and P. G. M. Wuts, Protecting Groups in Organic Synthesis, Second Edition, Wiley, New York, 1991, and references cited 45 therein.

The following schemes are presented with details as to the preparation of representative compounds that have been listed hereinabove. The compounds of the invention may be prepared from known or commercially available starting 50 materials and reagents by one skilled in the art of organic synthesis.

Representative Scheme 1

$$(R^4)_n$$
 N
 R^{2a}
 R^{2b}
 $R^{$

Representative Scheme 2

$$R^{2a}$$
 R^{2b} R^{2c} R^{2d} R

Representative Scheme 3

$$(R^{4})_{n}$$

$$N$$

$$R^{2a}$$

$$R^{2b}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2d}$$

$$R^{2a}$$

$$R$$

Example 1

Protocols/Methods for In Vitro Testing of Candidate Compounds

The present inventors employed a novel methodology that integrates a "sensitized" chemical genetic high-throughput screen (HTS) with RNA-interference (RNAi) screening technology in order to identify specific small molecule inhibitors of the Wnt pathway in Drosophila cells. As described herein, Drosophila Clone 8 cell-based assay systems developed by the present inventors to investigate the Wnt/wg pathway [DasGupta et al. Science 308, 826-33 (2005)] were used in a small molecule chemical genetic 15 screen to identify specific inhibitors of the pathway. These cell-based assays, which are described in detail below, utilize a Wnt-responsive luciferase reporter dTF12, the activity of which can be determined using immunofluorescence-based visual detection means. The present inventors 20 used the small-molecule library available from the Institute of Chemistry and Cellular Biology (ICCB-Longwood) at Harvard Medical School, Boston, for the screen.

More particularly, the method for testing and identifying compounds useful in the present invention begins with the 25 activation of the signaling pathway by the introduction of dsRNAs specific for Axin, which is the scaffold protein that negatively regulates β-cat by promoting its GSK-3β-mediated degradation. The resultant activation of the Wnt signaling pathway is then detected by assessing the activity of 30 the Wnt-responsive luciferase reporter gene in the cell-based assay system. Thereafter, candidate compounds are added to the cell-based assay system to assess their effect on the strongly induced Wg-reporter-gene (TOPFlash) activity that results from the dsRNA-mediated knockdown of Axin. This 35 protocol significantly increases the specificity of the smallmolecule inhibitors for CRT and serves to identify molecules that regulate Wnt signaling activity downstream of the Axin-mediated degradation complex. Although not wishing to be bound by theory, the prediction is that the candidate 40 compounds act on the "activated" or stable pool of β -cat and potentially prevent its interaction with known components of the transcriptional-activator complex (such as pangolin (pan)/dTcf, pygopus (pygo), legless (lgs) or Bc19, p300/ CBP), or other proteins that may function to regulate the 45 activity of stabilized cytosolic β -cat.

Methods and Materials

Primary Small Molecule Screen for the Wingless Signaling Pathway in *Drosophila* Clone 8 Cells

Day 1 (PM):

Set up transfection with Wg-reporter (dTF12), Normalization vector (PolIII-RL) and dsRNA against DAxin (dsRNA is specific towards *Drosophila* Axin and lacks any predicted off-targets).

- 1. Add 40,000 *Drosophila* Clone 8 cells (in 40 μ L) in 55 384-well plate (white solid bottom, Corning Costar) using the multidrop.
- 2. Add 204 of Transfection mix in each well of a 384-well plate (Corning Costar) using the multidrop.

Transfection Mix:

TOP12x-Luc (DNA)=25 ng (0.25 μL , of DNA @ 0.1 $\mu g/\mu L$) PolIII-RLuc (DNA)=25 ng (0.25 μL of DNA @ 0.1 $\mu g/\mu L$) dsRNA to DAxin=100 ng (5 μL of dsRNA @ 20 ng/ μL) Buffer EC=13.5 μL

Enhancer=0.8 μL,

Effectene=0.25 μL

Total volume=20 μL

48

Incubate at 25° C. for 4 days to ensure complete knockdown of Axin.

Day 5 (PM):

Add small molecule library (Cybio Robot). Incubate 18 hrs. Day 6 (AM):

Assay luminescence from the samples using the "Dual-Glo" luciferase kit (Promega Inc.).

Specifically, aspirate supernatant and add 204 media+20 μ L luciferase buffer using the multidrop. Read Firefly Luciferase activity on the En Vision (Perkin Elmer plate reader). Add 20 μ L of Stop&Glo using the multidrop. Read Renilla luciferase activity on the En Vision (Perkin Elmer plate reader).

Epistasis Analysis:

Epistasis Analysis was conducted in a 96 well format following the protocol as described for the Primary Screen (above), except that, 80,000 Clone 8 cells were used per well. Small Molecule Compounds were used at a final concentration of 2.5 ng/ul.

Reporter Assay in Mammalian HEK 293 cells:

HEK 293 cells were transfected with 50 ng each of the Wnt-responsive STF16 luciferase reporter and pCMV-RL normalization reporter using the Lipofectamine LTX (Invitrogen Inc.) in a 96 well plate format.

Transfection Mix Per well

STF16-FLuc (DNA): 50 ng (0.54 of DNA @ 0.1 $\mu g/\mu L$) CMV-RLuc (DNA): 50 ng (0.5 μL of DNA @ 0.1 $\mu g/\mu L$) Lipofectamine-LTX: 0.25 μL

Serum Free Medium: 20 µL

Cells were cultured in DMEM/10% FBS at 37° C. for 2 days following which, they were induced with Wnt3a conditioned media for 1 day and then treated with small molecule compounds to a final concentration of 2.5 ng/µL for approximately 18 hours. Luciferase reporter activity was then measured using the Dual-Glo system (Promega Inc.) on the Envision Plate Reader. Normalized luciferase activity in response to treatment with candidate small molecule compounds was compared to that obtained from cells treated with DMSO.

C57mg transformation Assay: The transformation assay was carried out in a 96 well format. C57 mg cells were cultured in DMEM/10% FBS supplemented with purified Wnt3a protein (R&D Systems) to a final concentration of 100 ng/μl. Small molecule compounds dissolved in DMSO were added to a final concentration of 10 ng/µl and 0.01% DMSO. Following incubation at 37° C. for 5 days, cells were fixed with 4% Formaldehyde in 1×PBS at RT for 30 min and washed subsequently with 1×PBS at room temperature (RT) for 5 minutes (×3). Cells were then permea-50 bilized in Blocking buffer (0.1% Triton-X/1×PBS/5% Normal Goat Serum) at RT for 20 min, subsequent to which, cells were incubated with anti-\beta-cat at RT for 1 hour (diluted to 1:1000 in blocking buffer). Subsequently, cells were washed with 1×PBS at RT for 10 minutes (×3) and then incubated with secondary antibody and Alexa-Fluor 488 conjugated phalloidin in Blocking buffer at RT for 1 hour. Following a brief wash in 1×PBS, cells were imaged in PBS buffer using the Array-Scan imaging system.

Molecular validation of C57 mg transformation assay was
performed by qPCR analysis of the Wnt-target gene, WISP1.
First strand cDNA was prepared from C57 mg cells treated
as above using Cells-to-cDNA kit (Ambion, Inc.) as directed
by the manufacturer. Equal amounts of cDNA were used for
qPCR analysis using primers specific for WISP1 and
GAPDH (the endogenous control). Comparison of amplification kinetics of WISP1 from samples treated with compounds to those treated with DMSO (ddCt method) was used

49

to study changes in Wnt-directed transcriptional activity in response to treatment with candidate small molecule compounds.

Unless otherwise indicated, all experiments described herein that call for supplemental Wnt3a utilize Wnt3a conditioned media prepared by harvesting media from L-cells stably transfected with a Wnt3a coding construct (available from ATCC #CRL-2647). The cells are cultured in DMEM containing 10% fetal bovine serum (FBS). The medium, harvested from adherent cells cultured to about 80% confluency over 4 days, is purified through a 0.2 µm filter and stored at 4° C. over several months without an appreciable loss in activity [Willert et al. Nature 423, 448-52 (2003)]. Results

The Wnt signaling pathway was induced by the introduc- 15 tion of dsRNAs specific for Axin into Clone 8 cells comprising the Wg-responsive luciferase reporter-gene (dTF12). As described herein, Axin is a scaffold protein that negatively regulates Arm/β-cat by promoting its degradation. Thereafter, a selected set of a small molecule library was 20 added to the Clone 8 cell-based assay system to assess the effect of individual compounds on (Axin dsRNA-mediated) activated CRT by monitoring the activity of the Wg-responsive luciferase reporter-gene (dTF12). The primary screen identified molecules that have a statistically significant effect 25 on the activity of the dTF12-luciferase reporter gene, wherein a minimum of a 2.5-fold change in reporter activity was considered "significant" as a cut-off for hit-picking compounds for secondary screens. As shown in FIG. 1, addition of these compounds to the cells strongly repressed 30 dTF12-reporter activity (>70-90%). Six of the strongest inhibitors are identified herein and, as indicated, share significant structural similarities suggesting that they constitute a family of compounds (i.e., a subset of oxazoles and thiazoles) that regulate a common aspect of the Wnt-path- 35 way activity by potentially binding to the same target protein.

Epistatic Analyses:

Small molecule inhibitors identified in the primary screen may modulate Wnt signaling by affecting intermolecular 40 interactions at any point downstream of Axin in the signaling cascade. Given that the oncogenic character of β -cat and therefore the Wnt pathway itself is caused by aberrant CRT (Park et al. Cancer Res 59, 4257-60 (1999); Lin et al. Proc Natl Acad Sci USA 97, 4262-6 (2000), a major focus of the 45 present invention is to study those compounds which affect Wnt-responsiveness by regulating the transcriptional complex involved in CRT. The use of dsRNAs targeted to specific components of the Wnt pathway elucidates the level at which the compounds exert their inhibitory effect on the 50 Wnt/Wg signaling pathway. This objective can be achieved by activating the Wnt pathway in Clone 8 cells using dsRNAs targeting other known negative regulators of the Wnt pathway, such as Slimb/βTrCP and SkpA, and assaying the effect of the compounds on the dTF12 reporter activity 55 in these cells. Each of the aforementioned biomolecules functions to negatively regulate Wnt signaling downstream of Axin, so these analyses further delineate the stage in the Wnt pathway wherein the compound in question exerts its effect. The results of this experimental approach are pre- 60 sented in FIG. 2.

To gain further evidence that the compounds exert their inhibitory effect in the nucleus, they have been tested in Clone 8 cells transfected with a construct coding for a degradation resistant form of β -cat, S37A β -cat [Orford et al. 65 J Biol Chem 272, 24735-8 (1997)]. This mutant form of β -cat bears a Serine to Alanine mutation, thus rendering it

50

refractory to GSK3 β mediated phosphorylation and hence proteosome degradation. An inhibitory effect of the compounds on the activity of S37A β -cat thus provides further proof that the compounds exert their effect on Wnt responsiveness at the level of CRT. The concentration of the compounds for all of the above assays is kept constant at 2.5 ng/µl, which is the same as that used for the primary screen. As shown in FIG. 3, most of the compounds exert an inhibitory effect on Wnt signaling on the transcriptional level. Data depicted in FIG. 3 show that a majority of the compounds inhibit S37A-mediated reporter activity, thus lending further support to the notion that these putative inhibitors do indeed function by abrogating the activity of stabilized β -cat in the nucleus.

Reproducibility of Inhibitory Effect of Small Molecules in Mammalian Cells:

In order to confirm and corroborate the activity of CRT inhibitor compounds in a mammalian context, the present inventors have tested a subset of the inhibitors identified in the context of established mammalian cell lines. To this end, the present inventors have optimized culture conditions for screening for Wnt signaling modulators in mammalian HEK 293 cells in a 96-well plate format. Briefly, HEK 293 cells were transfected with pSTF16-LF along with the normalization reporter, pCMV-RL and the effect of the compounds on reporter activity in such cells was determined by quantifying the luminescence from the luciferase reporter gene as described in Dasgupta et al. [supra (2005)]. As shown in FIG. 6, the present inventors have been able to recapitulate the inhibitory effect of several candidate inhibitors in these cells using the Wnt responsive luciferase reporter, STF16-LF.

In that Wnt signaling has been shown to have a profound influence on both cell fate and cell proliferation in various developmental and pathogenic contexts [Clevers. Cell 127, 469-80 (2006)], the present inventors have begun to investigate the activity of a subset of the CRT inhibitors identified in the primary screen in the context of other available Wnt responsive cell lines. Such cell lines can be used to ascertain further the inhibitory activity of the putative small molecule inhibitors in a phenotypic context. Such Wnt responsive cell-specific phenotypes include an assessment of transformation of the C57 mg mammary epithelial cell line, neural differentiation capacity of G-Olig2 ES cells, E-cadherin expression in the HT-29 colon cancer cell line, and Wnt induced invasive capacity of the MCF-7 breast adenocarcinoma cell line.

The C57 mg cell line, which was isolated from mouse mammary epithelial tissue [Wong et al. Mol Cell Biol 14, 6278-86 (1994)], has previously been shown to undergo transformation when cultured in Wnt-conditioned media. Transformation of the cell line is evidenced by pronounced changes in morphology, typified by formation of chord-like bundles of cells or foci-forming colonies that break off and float in the media [Wong et al. supra, 1994]. This Wnt responsive phenotype provides a mammalian assay in which to evaluate the inhibitory effect of the small molecule inhibitors identified in the primary screen. Briefly, cells are cultured in Wnt3a conditioned media in the presence or absence of a small molecule inhibitor and morphological analysis conducted using automated microscopy.

The present inventors have established a phenotypic assay using the Wnt-responsive C57 mg mouse mammary epithelial cell line to ascertain the validity of the inhibitory compounds identified in the primary screen. Specifically, addition of Wnt3a conditioned media or purified Wnt3a protein results in cellular transformation, manifested by a

51

pronounced change from an epithelial-cell like morphology to those resembling spindle shaped cells with chord like bundles. Addition of candidate small molecule compounds to such cells in the presence of Wnt3a results in significant inhibition of the transformation phenotype. The Array-Scan 5 imagining system (Cellomics Inc.) is used to image such phenotypic changes in a 96-well plate format so as to gain a quantitative estimate of the degree of the inhibitory effect of the compounds on Wnt3a induced transformation in C57 mg cells. Quantitative analysis of the transformation phe- 10 notype is measured by the degree of actin fiber alignment (defined as anisotropy), which is expressed as the standard deviation (SD) of the angles projected by the actin fibers relative to the normal; low SD numbers reflect an increase in Wnt-responsive transformation. This approach allows for 15 objective inferences on the cellular effects of the candidate inhibitors. See FIG. 5.

As depicted in FIG. 5, compounds 10 and 14 show a significant inhibition of Wnt3a induced C57 mg transformation, whereas compounds 1, 5, 8, 11, 12, 13, 18 and 22 20 show a partial reduction in the degree of transformation. It should be noted that the degree of inhibitory effect of the compounds on Wnt-induced phenotypes may vary with different cellular types. For example, compounds 10 and 14 are poor inhibitors of TOP12-LF activity in HEK-293 cells 25 (see FIG. 4), and yet seem to be potent inhibitors of Wnt3a-induced transformation in C57 mg cells. This could perhaps be due to their effect on the interaction of β -cat with different transcriptional co-factors in the nucleus that drive transcription of different targets. However to further validate 30 the efficacy of candidate compounds in inhibiting Wntinduced C57 mg transformation, the present inventors monitored changes in the expression of WISP1 mRNA by qRT-PCR. WISP1 is the key β-catenin target responsible for C57 mg transformation in response to Wnt signaling [Xu et al. 35 Genes Dev. 14, 585-95 (2000)]. Reduction in the level of WISP1 mRNA correlates highly with the observed phenotypic rescue in response to Wnt exposure (FIG. 6).

The HT-29 colon cancer cell line has been shown to undergo β-cat/TCF dependent Epithelial Mesenchymal 40 present invention, that modulate the activity of a specific Transition (EMT) which can be monitored by changes in both morphology and downregulation of E-cadherin expression levels and upregulation of vimentin [Yang et al. Cell 127, 139-55 (2006)]. The HT-29 cell line, therefore, provides a model system for analysis of the candidate small 45 molecule inhibitors in the context of a transformed colon cancer cell. Accordingly, the present inventors will treat HT-29 cells with candidate small molecules and assay E-cadherin and vimentin levels by western blotting as well as immunochemistry using commercially available antibod- 50 ies. Furthermore, morphological analysis by compound differential contrast (DIC) microscopy will also be used to determine the effect of the compounds in inhibiting β-cat dependent EMT.

The MCF-7 breast cancer cell line exhibits a pronounced 55 invasive capacity in response to Wnt signaling [Yook et al. Nat Cell Biol 8, 1398-406 (2006)]. To utilize this cell line to assess the activity of Wnt inhibitor compounds identified, MCF-7 cells can be transduced with recombinant retroviral vectors coding for Wnt3a or β-cat-S33Y, a constitutively 60 active form of β-cat [as described in Yook et al. supra, (2006)]. The retroviral vectors will be prepared from pPGSβ-cateninS33Y- or pPGS-Wnt3a-transfected 293 packaging cells. MCF-7 cells transduced with these retroviral vectors can be loaded onto the upper chamber of Matrigel (prepared 65 in serum-free DMEM culture media) containing Transwells, which are subsequently cultured in complete media with

52

inhibitory compounds or DMSO. The cultures will be incubated at 37° C. in a humidified chamber for 24-72 hrs. Following incubation of the cell-loaded Matrigel, non-invasive cells are scraped off and the invaded cells counted by simple light microscopy by fixing and staining with Trypan Blue [Valster et al. Methods 37, 208-15 (2005)]. Results derived from this assay will provide insights into the use of compounds as inhibitors of the metastatic potential of malignant cells in general and malignant breast cancer cells in

G-Olig2 ES cells (available from ATCC) contain a GFP insertion in the gene for Olig 2, a neural lineage specific transcription factor. Neural differentiation, therefore, results in the upregulation of GFP-positive cells. Neural differentiation of G-Olig2 ES cells can be induced by treating these cells with synthetic Retinoic Acid (RA) following the appearance of Embryoid bodies in culture. It has previously been shown that Wnt signaling inhibits neural differentiation of ES cells [Bouhon et al. Brain Res Bull 68, 62-75 (2005)]. To assay the inhibitory effect of the candidate compounds, the present inventors will culture the above ES cells in Wnt3a conditioned media containing RA and individual compounds and determine the number of GFP positive cells by Flow Cytometry. The inhibitory effect on Wnt signaling will be reflected by a reduction in the number of GFP positive differentiated cells in cultures treated with DMSO+ RA as compared to those treated with compound+RA.

Although the present Example is directed to screening in the context of an "activated" Wnt pathway, it will be appreciated that other components of the pathway that promote Wnt signaling can be targeted for RNAi mediated ablation and the result of such an approach would be an "inhibited" Wnt pathway. In either event, the cellular milieu of an "activated" or an "inhibited" Wnt pathway can be used as a genetic background in which to perform small molecule/compound chemical screens directed to the identification of small molecules/compounds such as those of the component of a signaling pathway.

Example 2

Protocols/Methods for In Vitro and In Vivo Testing

Preliminary in vivo tests to assay the efficacy of the compounds will be performed in the zebrafish, Danio rerio, wherein increased Wnt signaling during zebrafish embryonic development results in axial specification defects and loss of anterior fates. This is commonly manifested by loss of or reduced eye-structures. To test the effectiveness of the compounds in inhibiting Wnt-signaling in a whole organismal context, one-cell embryos will be injected with synthetic Wnt8 mRNA and cultured in the presence of DMSO or individual compounds. Inhibitory activity of the compounds will be assayed by quantifying the penetrance of the Wnt8 induced phenotype.

Upon successful in vivo validation of the compounds in an animal model system, their efficacy will be further tested in the clinically relevant mouse model system, viz. the APC_{min} mouse. Loss of APC function results in an increase in the level of signaling competent β -catenin, which has been shown to be the causative factor in the induction of colon cancer in the above mouse model. Such mice will be administered candidate compounds and assayed for the regression of tumors resulting from increased Wnt signaling 53

in the APC_{min} mouse. Standardized protocols for tail-vein and/or tissue injections will be used.

Example 3

The colon carcinoma cell line, HCT-116 offers a pathologically-relevant system to examine the effects of candidate Wnt-inhibitors. HCT-116 cells bear a deletion of the S45 residue in β -cat, making it refractory to phosphorylation and degradation, thereby resulting in constitutive CRT. Wnt targets such as CycD1 and c-myc are thus overexpressed in this cell-type.

In order to test the inhibitory effect of candidate compounds on the transcription of endogenous Wnt/β-cat target genes in HCT116 cells, lysates were prepared from cells that were either treated with candidate small molecules or DMSO control. As shown in FIG. 7, the protein levels of CycD1 and c-myc were markedly reduced upon the addition of increasing concentrations of candidate compounds. qRT- 20 PCR assays for the CycD1 and c-myc locus confirmed that the changes in their protein level reflected a change in their mRNA transcription (FIG. 8), further corroborating the effect of the candidate small molecules at the level of modulating CRT. Taken together, our analyses suggest a 25 common theme of CRT-inhibition by these candidate compounds in a wide variety of Wnt-responsive heterologous cell types, thus making them ideal lead compounds for drug development for Wnt/CRT-related human disease. Finally, as predicted for the inhibition of target genes involved in cell cycle and cell proliferation, flow cytometry analyses of HCT116 cells treated with candidate compounds showed a G0/G1 arrest of the cell cycle (FIG. 9). Cell cycle arrest of compound treated HCT116 cells was further confirmed by the reduced number of phosphorylated Histone3 (PH3) positive cells, when cultured in the presence of candidate compounds (FIG. 10).

C3: Oxazole C5: Thiazole 54

Example 4

Additional Protocols

HCT116 cells were obtained from ATCC (CCL-247) and cultured in McCoy's 5A medium supplemented with 10% Fetal Bovine Serum (FBS) at 37° C. with 5% CO₂. Target accumulation validations were performed by qPCR following treatment with the lead compounds. Briefly, cells were treated specified concentrations of compounds for 1 day, and lysed in 50 µl of Cell Lysis Buffer (Ambion #AM8723) at 75° C./10'. First-strand cDNA was prepared using High-Capacity Reverse Transcription Kit (Applied Biosystems #4368814) as per manufacturer's instructions. Real-time qPCR was carried out for CycD1, c-Myc and GAPDH2 (endogenous control) using pre-validated gene-specific primer pairs from Qiagen and the SYBr green PCR master mix from Applied Biosystems. Data analysis was performed using the MxPro-Mx3005P system from Stratagene using the ddCt method.

Flow Cytometry analysis was performed on HCT116 cells treated with candidate compounds for 16 hrs per standard protocols. Briefly, compound treated cells were harvested and washed in 1×PBS followed by fixation in 70% Ethanol at 4° C. for 16 hrs. Cells were then washed in 1×PBS and treated with RNAse at 37° C. for 30'. Following extensive washes in 1×PBS, cellular DNA was stained with 500 ug/ml of Propidium Iodide at room temperature for 10'. Cells were washed again in 1×PBS and analysed by flow cytometry on a FACScalibur machine (Beckson Dickinson) at the NYU 30 flow cytometry core facility.

Example 5

Exemplary Compounds of the Invention

The following compounds, as exemplified in Tables 1-10, have been purchased, or can be purchased, or can be prepared according to the synthetic schemes described herein, or can be prepared according to the synthetic methods known to one skilled in the art.

TABLE 1

Oxazole amides (R³ = NH-benzyl)

ID Structure MW

Ha-1

421.35

 $^{\mathrm{ID}}$

MW

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzyl)$

Structure

Oxazole amides (F	$x^3 = NH-benzyl$
-------------------	-------------------

$$\begin{array}{c|c}
& H \\
& N \\
&$$

TABLE 1-continued		
	Oxazole amides $(R^3 = NH-benzyl)$	
	$\bigcap_{O} \bigvee_{Me} \bigvee_{Me} \bigvee_{N} \bigvee_$	
ID	Structure	MW
Ha-9	O S HN O CI	430.96
IIa-10	ON HIN CI	430.96
IIa-11	O S HN	396.51
Па-12	O HN O	440.52

ID

MW

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{N} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_$$

Structure

Oxazole	amides	$(R^3 =$	NH-benzyl)
Oxazoic	aimues	$(\mathbf{x} =$	INIT-UCIIZYI)

TABLE 1-continued

Oxazole	amides	$(R^3 =$	NH-benzyl)
Oxazoie	annues	(K =	NT-OCHZVII

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{O} \bigvee_{Me} \bigcap_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{N} \bigvee_{Me} \bigvee_{N} \bigvee_{N}$$

Oxazole an	nides ($R^3 =$	NH-benzyl)
------------	-----------------	------------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

	71 TABLE 1-continued	
	Oxazole amides (R ³ = NH-benzyl)	
	$\bigcap_{N \in \mathbb{N}} \mathbb{N} $	
ID	Structure	MW
IIa-28	HN	396.51
IIa-29	HN	412.51
Па-30		422.55

Oxazole amides ($R^3 = NH$ -benzyl)

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{O} \bigvee_{Me} \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigvee_{N} \bigvee_{N} \bigvee_{Me} \bigvee_{N} \bigvee_{N$$

ID Structure MW

Ha-34 412.51

ID

MW

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$)
----------------	---------------------	---

IIa-35 O 412.51

Structure

IIa-36 O 446.96

Oxazole	amides	(\mathbb{R}^3)	= NH-benzyl)	

ID	Structure	MW
IIa-38	NH NH	442.54

TABLE 1-continued

Oxazole	amides	(R^3)	= NH-benzyl)
---------	--------	---------	--------------

$$\bigcap_{Me} \bigcap_{Me} \bigcap_{Me}$$

421.35

TABLE 1-continued

Oxazole	amides	(R^3)	= NH	-benzyl)
---------	--------	---------	------	----------

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

ID	Structure	MW
Ha-44	NH O	386.90

TABLE 1-continued

$$\begin{array}{c|c}
& H \\
& N \\
&$$

ID

MW

TABLE 1-continued

Oxazole amides	(R ³	= NH-benzyl)
•		

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O \longrightarrow Me} S \bigcap_{O \longrightarrow N} H$$

Oxazole amides $(R^3 = NH-benzyl)$

Oxazole amides $(R^3 = NH-benzyl)$

ID Structure MW

IIa-59 432.99

Ha-60 Cl 432.99

Oxazole ai	mides (R ³	= NH-ber	zyl)
------------	-----------------------	----------	------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Oxazole amides (R ³ :	= NH-benzvl)
----------------------------------	--------------

Oxazole a	mides ($R^3 =$	NH-benzyl)
-----------	---------	---------	------------

Oxazole amides $(R^3 = NH-benzyl)$

$$\begin{array}{c|c}
& H \\
& N \\
&$$

Oxazole amides $(R^3 = NH-benzyl)$

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} \bigcap_{O} \bigvee_{Me}$$

TABLE 1-continued		
	Oxazole amides $(R^3 = NH-benzyl)$	
	$\bigcap_{O} \bigvee_{Me}^{N} \bigcap_{O} \bigvee_{Me}^{H}$	
ID	Structure	MW
Ha-78	F NH	370.45
Ha-79	F NH CI	404.89
Ha-80	F NH	400.48
Ha-81	F NH	384.48

 ${\rm ID}$

MW

TABLE 1-continued

Oxazole amides	$(R^3 =$	NH-benzyl)
----------------	----------	------------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

IIa-82 414.46

Structure

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} S \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{O} \bigvee_{Me} \bigcap_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{N} \bigvee_{Me} \bigvee_{N} \bigvee_{N}$$

ID

MW

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzyl)$

Structure

IIa-88 380.51

ID

MW

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

Structure

IIa-89 396.51

IIa-90 366.49

IIa-91 400.93

	119	
TABLE 1-continued		
	Oxazole amides $(R^3 = NH-benzyl)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-92	NH NH	400.93
IIa-93	0	396.51
	NH NH	
Ha-94	NH NH	380.51
Ha-95		410.50

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl) N N N N N N N N N N N N N	
ID	Structure	MW
IIa-96	HN	380.51
	N N O	
IIa-97	HN	396.51
IIa-98	NH OS N N	398.48

Oxazole amides ($R^3 = NH$ -benzyl)

$$\bigcap_{N \to \infty} \mathbb{I}_{N}$$

TABLE 1-continued

Oxazole	amides	(R^3)	= NH-benzyl)
---------	--------	---------	--------------

$$\bigcap_{O \subseteq Me} S \bigcap_{Me} \emptyset$$

Oxazole	amides	$(R^3 =$	NH-benzyl)

 ${\rm ID}$ Structure MW Ha-104 428.51 IIa-105 416.47 Ha-106 437.35

TABLE 1-continued

Ovazole	amidee	$(\mathbb{R}^3 -$	NH-benzyl)

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID	Structure	MW
Ha-107	NH OS N F	386.45

	131	
	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{N} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me}$	
ID	Structure	MW
Ha-110	O NH O S N F	430.46
IIa-111	F O S	404.44
IIa-112	NH	382.49

TABLE 1-continued

Oxazole amides (I	$R^3 = NH-benzyl$
-------------------	-------------------

 ${\rm ID}$ MWStructure IIa-113 416.93 IIa-114 416.93 Ha-115 412.51

TABLE 1-continued

Oxazole amides	$(R^3 =$	NH-benzyl)
----------------	----------	------------

ID Structure MW

IIa-117 396.51

IIa-118 412.51

	TABLE 1-continued	
	Oxazole amides $(R^3 = NH-benzyl)$	
	$\bigcap_{N \to \infty} \mathbb{S} \longrightarrow \bigcap_{N \to \infty} \mathbb{N}$	
ID	Structure	MW
Па-119	F O NH	400.48
н 120		202.40
IIa-120	NH O NH O N	382.49
Ha-121	CI HN S O	416.93

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{Me}$	
ID	Structure	MW
Ha-122	CI O S	416.93
Ha-123	NH N	412.51
IIa-124	NH O S	396.51

Oxazole amides $(R^3 = NH-benzyl)$

143			
TABLE 1-continued			
	Oxazole amides $(R^3 = NH-benzyl)$		
	$\bigcap_{N \to \infty} S \longrightarrow \bigoplus_{M \in \mathbb{N}} \bigcap_{N \to \infty} G$		
ID	Structure	MW	
IIa-127	F O S	400.48	
IIa-128	NH O S N	422.55	
IIa-129	NH	402.90	

	TABLE 1-continued	
	Oxazole amides $(R^3 = NH-benzyl)$	
II)	N Structure	MWI
ID	Structure	MW
Ha-130	CI	437.35
	CI	
Ha-131	CI NH	437.35
	CI	
IIa-132	NH O S	416.93
	CI	

Oxazole amides $(R^3 = NH-benzyl)$

ID Structure MW

IIa-134 416.93

TABLE 1-continued

Oxazol	e amides	$(R^3 =$	NH-benzyl)

TABLE 1-continued

Oxazole	amides	(R ³ =	NH-benzyl)

	Me S	
ID	Structure	MW
Ha-138	CI	416.93
	O S O	
	N N	
IIa-139	NH O S	412.51
	N	
Ha-140	♠ ∧	396.51

	TABLE 1-continued	
	Oxazole amides $(R^3 = NH-benzyl)$	
	$\bigcap_{N \in \mathbb{N}} \mathbb{N} \longrightarrow \mathbb{N}$	
ID	Structure	MW
Ha-141	NH	426.50
Ha-142		412.51
	NH OSS	
	N	
IIa-143	NH O S	402.90
	O N	

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	$\bigcap_{O} \bigvee_{Me} \bigvee_{N} \bigvee_{Me} \bigvee_{N} \bigvee_$	
ID	Structure	MW
IIa-144	CI	437.35

IIa-146

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{M$	
ID	Structure	MW
Ha-147	NH OS N N CI	446.91
Ha-148		432.93
	NH ONH ONH CI	
Па-149	F O S NH O CI	420.89

	TABLE 1-continued	
	Oxazole amides (R ³ = NH-benzyl)	
	N S N N N N N N N N N N N N N N N N N N	
ID	Structure	MW
IIa-150	NH O S	398.48
IIa-151	CI	432.93
IIa-152	CI NH	432.93
	O ²	

TABLE 1-continued

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	$\bigcap_{N \to \infty} S \longrightarrow \bigcap_{N \to \infty} H$	
ID	Structure	MW
IIa-153	NH	442.49
IIa-154	F O S	416.47
Ha-155	NH ONH ON N	428.51

Oxazole amides ($R^3 = NH$ -benzyl)

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{O} \bigvee_{Me} \bigcap_{O} \bigvee_{Me}$$

ID MW Structure

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{N \to \infty} \mathbb{I}_{N}$$

Oxazole amides $(R^3 = NH-benzyl)$

$$\bigcap_{N \to \infty} \mathbb{I}_{N}$$

ID

MW

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

$$\begin{array}{c|c}
N & & H \\
N & & N
\end{array}$$

$$\begin{array}{c|c}
N & & Me
\end{array}$$

Structure

IIa-165 368.46

IIa-166 402.90

ID

MW

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzyl)$	Oxazole	amides	$(R^3 =$	NH-benzyl)
------------------------------------	---------	--------	----------	------------

IIa-167 402.90

Structure

IIa-168 398.48

H O 448.93

Oxazole amides (R	$^{3} = NH-benzyl$
-------------------	--------------------

ID	Structure	MW
Ha-170	H N N N	432.47

TABLE 1-continued

Oxazole amides ($R^3 = NH$ -benzyl)
------------------	---------------------

$$\bigcap_{O \subseteq Me} S \bigcap_{Me} H$$

IIa-174

Structure

MW

432.93

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzyl)$

$$\begin{array}{c|c}
& H \\
& N \\
&$$

TABLE 1-continued			
	Oxazole amides ($R^3 = NH$ -benzyl)		
ID	Structure	MW	
Ha-180	H N O N N	470.55	
Ha-181	H N O	414.48	
IIa-182	CI HN O	448.93	

TABLE 1-continued

$$\bigcap_{N \in \mathbb{N}} \mathbb{N} = \mathbb{N}$$

$$H_{\text{N}} = \frac{H}{N}$$
 444.51

Oxazole amides $(R^3 = NH-benzyl)$

ID Structure MW

Ha-186 448.93

Ha-187 H 414.48

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-188 448.93

Па-189 — Н 448.93

IIa-190 \longrightarrow H 444.51

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

$$\begin{array}{c|c}
N & & H \\
N & & N
\end{array}$$

$$\begin{array}{c|c}
Me & & N
\end{array}$$

ID Structure MWHa-191 428.51 IIa-192 458.49 IIa-193 428.51

TABLE 1 continued				
TABLE 1-continued Oxazole amides (R ³ = NH-benzyl)				
	Nazote afficies (K = Nri-belizyt)			
ID	Structure	MW		
IIa-194	O N N N N N N N N N N N N N N N N N N N	444.51		
Ha-195	H N O	454.55		
IIa-196	CI	432.93		

TABLE 1-continued

Oxazole amides $(R^3 = NH-benzy)$

Па-197 <u>Н</u> 398.48

IIa-198 432.93

Ha-199 H 432.93

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

$$\begin{array}{c}
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

ID	Structure	MW
Ha-200		428.51

Oxazole amides $(R^3 = NH-benzyl)$

ID Structure MW

Ha-204 / 428.51

Па-205 <u>Н</u> 416.47

	TABLE 1-continued Oxazole amides (R ³ = NH-benzyl)	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap$	
ID IIa-206	Structure	MW 436.89
Ha-200	CI	430.09
	F	416.47
Па-207	o S O S O S O S O S O S O S O S O S O S	
Ha-208	o H	418.90
IIa-209		436.89
	Cl N O	

	TABLE 1-continued	
	Oxazole amides (R ³ = NH-benzyl)	
	$\bigcap_{N \to \infty} \mathbb{S} \longrightarrow \bigcap_{N \to \infty} \mathbb{N}$	
ID	Structure	MW
IIa-210		453.35
IIa-211		448.93
IIa-212		453.35
Па-213	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	453.35
IIa-214	CI NOSSON H	436.89

TABLE 1-continued

Oxazole amides	$(R^3 = NH-benzyl)$
----------------	---------------------

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
ID	N Structure	MW
IIa-220	0	432.93
	CI OSSO H	
IIa-221	O #	448.93
IIa-222	, //	432.93
	CI OSSO NH	
IIa-223	O II	442.54
IIa-224	0	462.96
	S H N CI	

	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
ID	N Structure	MW
IIa-225	Q.	446.50
	N O O F	
IIa-226		458.54
IIa-227	${\Pr}_{\!$	477.38
	N S O O O O O O O O O O O O O O O O O O	
IIa-228	Br	477.38
IIa-229		412.51

	209	
	TABLE 1-continued	
	Oxazole amides $(R^3 = NH-benzyl)$	
ID	N Structure	MW
IIa-230		456.57
	H _N	
IIa-231	.0_/	456.57
	N N N N N N N N N N N N N N N N N N N	
IIa-232		416.47
	F N N N N N N N N N N N N N N N N N N N	
IIa-233		507.41
	Br O O	
IIa-234		442.54

$$\bigcap_{N \to \infty} S \longrightarrow \bigcap_{N \to \infty} H$$

	213	
	TABLE 1-continued	
	Oxazole amides ($R^3 = NH$ -benzyl)	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha-240		472.56

	TABLE 1-continued	
	Oxazole amides $(R^3 = NH-benzyl)$	
	N S H	
ID	Structure	MW
IIa-245	N H N Br	477.38
IIa-246		442.54
IIa-247	N S O O O O O O O O O O O O O O O O O O	412.51
IIa-248	N S N N N N N N N N N N N N N N N N N N	456.57
IIa-249		456.57

Oxazole amides (R	$^{3} = NH-benzyl$
-------------------	--------------------

$$\bigcap_{N \to \infty} S \longrightarrow \bigcap_{N \to \infty} H$$

ID Structure MW

IIa-250 416.47

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

TABLE 1-continued

Oxazole amides ($R^3 = NH$ -benzyl	Oxazole	amides	$(R^3 =$	NH-benzyl
-------------------------------------	---------	--------	----------	-----------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Oxazole amides (R³ = NH-benzyl)

ID Structure MW

IIa-257

NH

400.48

IIa-258

O

IIa-258

TABLE 2

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides ($R^3 = NH$ -phenethyl)	
	N S N N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 302	ON SHIN	444.98
Па- 303	CI ON HN	424.57
Ha- 304	O S O HN	410.54
Ha- 305	O S HIN O O O O	470.59

TABLE 2-continued

Oxazole	amides	$(R^3 =$	NH-phenethyl)
---------	--------	----------	---------------

ID	Structure	MW
Ha- 306		410.54

	US 9,433,61	1 B2
	227	
	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me}$	
ID	Structure	MW
IIa- 309		498.65
Ha- 310		456.57

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 312		440.57
IIa- 313	HIN	430.96
Ha- 314	HIN O	456.57

 $_{
m ID}$

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

Structure

TABLE 2-continued

Oxazole amides	$(R^3 = NH-phenethyl)$
----------------	------------------------

TABLE 2-continued

Oxazole amides	(R^3)	= NH-phenethyl)
----------------	---------	-----------------

ID	Structure	MW
Па-319		486.59

TABLE 2-continued

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S N N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 323	H N S S S S S S S S S S S S S S S S S S	394.54
Ha- 324	H _N	468.62
	N N N N N N N N N N N N N N N N N N N	
IIa- 325	HN O	435.38

TARLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 326	HN	414.96

	US 9,433,611	B2
	243	
	TABLE 2-continued	
	Oxazole amides ($R^3 = NH$ -phenethyl)	
	N S H	
ID	Structure	MW
Ha- 328	O NH O S N N N O N N N O N N N O N N N O N N N O N N N O N N N O N N N O N N N O N N N N O N N N N O N N N N O N	472.63

TABLE 2-continued

Oxazole amides ($R^3 = NH$ -phenethy	Oxazole	amides	$(\mathbb{R}^3 =$	NH-phenethyl)
---------------------------------------	---------	--------	-------------------	--------------	---

ID	Structure	MW
IIa- 330	O NH O S N O S	412.58
	\	

TABLE 2-continued

Oxazole amides	(R^3)	= NH-	phenethy	1)
----------------	---------	-------	----------	----

ID	Structure	MW
Ha- 332	HN	454.59

 $_{
m ID}$

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

Structure

TABLE 2-continued

251

Oxazole amides ($R^3 = NH$ -phenethyl	Oxazole	amides	$(\mathbb{R}^3 =$	NH-phenethyl)	
--	---------	--------	-------------------	---------------	--

TABLE 2-continued

Oxazole amides	$(R^3 =$	NH-phenethyl)
----------------	----------	---------------

IIa-338

IIa-339

380.51

TABLE 2-continued

Oxazole amid	es $(R^3 =$	NH-phenethy	(1)

TABLE 2-continued

257

ID	Structure	MW
Ha- 342	HN	380.51

Oxazole amides $(R^3 = NH-phenethyl)$

ID	Structure	MW
Ha- 344	ONH ONH ON N	472.56

TABLE 2-continued

Oxazole amides	(R^3)	= NH-phenethyl)
----------------	---------	-----------------

Oxazole amides $(R^3 = NH$ -phenethyl)

ID	Structure	MW
Ha- 348	NH O S F	460.53

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

$$\bigcap_{O} \bigcap_{Me} S \bigcap_{N} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_$$

	~	
ID	Structure	MW
Ha- 350	NH ONH F	488.58

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

ID Structure MW

TABLE 2-continued

Oxazole amid	es $(R^3 =$	NH-phenethy	(1)

ID	Structure	MW
Ha- 354	NH O NH O N	484.62

TABLE 2-continued

Oxazole amides ($R^3 = NH$ -phenethy	Oxazole	amides	$(\mathbb{R}^3 =$	NH-phenethyl)
---------------------------------------	---------	--------	-------------------	--------------	---

ID	Structure	MW
Па- 356	NH OS NH	456.57

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

ID	Structure	MW
Па- 358	NH O NH	396.51

TABLE 2-continued

TABLE 2-continued

Oxazole amides	$(R^3 =$	NH-phenethyl)
----------------	----------	---------------

TABLE 2-continued

Oxazole	amides	$(\mathbb{R}^3 =$	NH-nhe	nethyl)
Oxazoie	amines	(K =	NH-bne	nernvii

ID	Structure	MW
IIa- 364	CI NH O S	430.96

TABLE 2-continued

Oxazole amides (F	$R^3 = NH$ -phenethyl)
-------------------	------------------------

ID	Structure	MW
IIa- 366	NH O S NH O S	396.51

TABLE 2-continued

Oxazole amides	$(R^3 = NH-phenethyl)$
----------------	------------------------

ID	Structure	MW
IIa- 368	CI NH O S CI	451.38

TABLE 2-continued

ID	Structure	MW
Па- 370	NH O S N CI	430.96

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides ($R^3 = NH$ -phenethyl)	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 372	NH NH CI	505.04

TABLE 2-continued

Oxazole amid	es $(R^3 =$	NH-phenethy	(1)

ID	Structure	MW
Па- 374	NH O N N	426.54

TABLE 2-continued

Oxazole amides	$(R^3 = NH-phenethyl)$)
----------------	------------------------	---

ID	Structure	MW
Па-376	CI NH O S S S S S S S S S S S S S S S S S S	476.98

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 378	NH O S N	456.57

TABLE 2-continued

Oxazole amides ($R^3 = NH$ -phenethy	Oxazole	amides	$(\mathbb{R}^3 =$	NH-phenethyl)
---------------------------------------	---------	--------	-------------------	--------------	---

ID	Structure	MW
Ha- 380	NH ON NH	530.65

TABLE 2-continued

Oxazole amides	$(R^3 =$	NH-phenethyl)
----------------	----------	---------------

ID	Structure	MW
Па- 382	CI	446.96
	N N	

TABLE 2-continued

	Oxazole amides ($R^3 = NH$ -phenethyl)	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 385		426.54
Ha- 386		426.54
	N N	
IIa- 387	HN O	440.57

TABLE 2-continued

Oxazole amides ($R^3 = NH$ -phene	ethyl)
------------------------------------	--------

ID	Structure	MW
Ha- 388		456.57

	303 TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	$\bigcap_{O} \bigvee_{Me} \bigcap_{Me} \bigcap_{O} \bigvee_{N} \bigvee_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_$	
ID	Structure	MW
Ha- 391	CI H N O S O	462.96
	o No	
Ha- 392		428.51
	N N	
IIa- 393		442.54

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 394	HN OO S OO S OO S	456.57
Па- 395		472.56
	N N N N N N N N N N N N N N N N N N N	
Ha- 396		488.56

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
IIa- 397	S O S O	474.60
	N N N N N N N N N N N N N N N N N N N	
Ha- 398	CI	462.96
	N N	
Ha- 399		488.56
	N N	

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 400	H N O S O	428.51
	N N N N N N N N N N N N N N N N N N N	
Ha- 401		442.54
	N N	
IIa- 402		442.54

TABLE 2-continued

Oxazole amides $(R^3 = NH$ -phenethyl)

TABLE 2-continued

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{N} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me$	
ID	Structure	MW
Ha- 405		472.56
IIa- 406		488.56
Ha- 407	CI H _N	446.96

	315 TABLE 2-continued	
	Oxazole amides (R ³ = NH-phenethyl)	
	N S H N N N N N N N N N N N N N N N N N	
ID	Structure	MW
Ha- 408		412.51
Па- 409	H N O S O N O N O O N O O O O O O O O O O	426.54
Па- 410		426.54

TABLE 2-continued

TABLE 2-continued				
	Oxazole amides $(R^3 = NH-phenethyl)$			
	N S H N N N N N N N N N N N N N N N N N			
ID	Structure	MW		
IIa- 411	HN	440.57		
Ha- 412		456.57		
Ha- 413	H N O N N	472.56		

TABLE 2-continued

Oxazole amides	(R3	= NH-phenethyl)
----------------	-----	-----------------

ID	Structure	MW
Ha- 414	S O S O O S O	458.60

TABLE 2-continued

ID	Structure	MW
Ha- 417	S O S O S O S O S O S O S O S O S O S O	462.57

TABLE 2-continued				
Oxazole amides $(R^3 = NH-phenethyl)$				
$\bigcap_{N \to \infty} S \bigcap_{N \to \infty} \prod_{N \to \infty} \prod_$				
ID Structure	MW			
IIa- 421 O H N O O H	460.98			
IIa- 422 O H N O N O O O O O O O O O O O O O O O	492.98			
IIa- 423 O H N O O O O O O O O O O O O O O O O	476.98			
IIa- 424 CI N O S O H	492.98			
IIa- 425	432.93			

	TABLE 2-continued	
	Oxazole amides $(R^3 = NH-phenethyl)$	
	N S H	
ID	Structure	MW
Ha- 426	CI O S O NH CI	467.37
Ha- 427	CI N O S O H	446.96
Ha- 428	CI N O S O H	492.98
IIa- 429	CI O N N	492.98

TABLE 3

TABLE 3-continued

Oxazole amides $(R^3 = NH-Phenyl)$	Oxazole amides (R ³ = NH-Phenyl)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bigcap_{O} \bigcap_{Me} S \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_$
ID Structure MW	ID Structure MW
IIa- 501	IIa- 506
11a- 502	IIIa- 507
IIa- 503 O H N S 40	IIa- 508
IIa- 504 456.57 45 0 H N 50	Ha- 509 O H N 393.47
IIa- 505 O H F 60	IIa- 510

TABLE 3-continued

TABLE 3-continued

	Oxazole amides (R ³ = NH-Phenyl)			Oxazole amides $(R^3 = NH-Phenyl)$	
	N N N N N N N N N N	5		$\bigvee_{O}^{N}\bigvee_{Me}^{H}$	
ID	Structure	MW	ID	Structure	MW
IIa- 511	$F \xrightarrow{F} F$	452.46 15	IIa- 514	Br	463.35
	H N O	20			
		25		N N N N N N N N N N N N N N N N N N N	
		30			
Ha- 512		414.48 35	IIa- 515	CI H N O	418.90
	0=8=0	40			
		45			
		50			
Ha- 513	$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ $	414.48	IIa- 516	CI——H	418.90
	N N	60			

TABLE	3-con	itinued

TABLE 3-continued			TABLE 3-continued		
	Oxazole amides $(R^3 = NH-Phenyl)$		Oxazole amides (R ³ = NH-Phenyl)		
	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	5			
ID	Structure	10 MW	ID	Structure	MW
IIa- 517	CI H N O	478.96 15			456.52
	O S N N N N N N N N N N N N N N N N N N	25		N N N N N N N N N N N N N N N N N N N	
Ha- 518		30 412.51 35	IIa- 521		442.49
		40			
Па- 519	HN OO SOO	50 412.51 55	Ha- 522		428.51

334 TABLE 3-continued

	TABLE 3-continued			TABLE 3-continued	
	Oxazole amides $(R^3 = NH-Phenyl)$	_		Oxazole amides $(R^3 = NH-Phenyl)$	
	$\bigcup_{O}^{N}\bigcup_{Me}^{H}\bigcup_{O}^{H}$	5		$\bigvee_{O}\bigvee_{Me}^{N}\bigvee_{S}\bigvee_{O}\overset{H}{\bigvee_{N}}$	
ID	Structure	MW	ID	Structure	MW
Ha- 523	Br H N O	481.34 15		CI	432.93
	N. N	20		O S O	
		30)		
Ha- 524	H N O	398.48	Ha- 527		412.51
	NN	40			
Па- 525	CI H	50 432.93	IIa- 528	$-\!$	412.51
	O S O	60 65)		

336 TABLE 3-continued

	TABLE 3-continued			TABLE 3-continued	
	Oxazole amides $(R^3 = NH-Phenyl)$			Oxazole amides $(R^3 = NH-Phenyl)$	
	$ \begin{array}{c} $		5		
			ID	Structure	MW
IIa- 529	Structure O H N O O O O O O O O O O O O	MW 456.52	IIa- 532	A Property of the contract of	412.51
	N N N N N N N N N N N N N N N N N N N		20 25	N N N N N N N N N N N N N N N N N N N	
IIa- 530		444.51	30 IIa- 533	H	426.54
			40 45	N N N N N N N N N N N N N N N N N N N	
IIa- 531	Cl	432.93	50 IIa- 534	F H N	420.44
	N N N N N N N N N N N N N N N N N N N		60	r N N	

TABLE 3-continued

TABLE 3-continued

	17 IDEE 5 continued			17 IDEE 5 Continued	
	Oxazole amides ($R^3 = NH-Phenyl$)			Oxazole amides $(R^3 = NH-Phenyl)$	
	N N N N N N N N N N	5			
ID	Structure	MW	ID	Structure	MW
Па- 535	$F \xrightarrow{H} O$	416.47 15	Ha- 538	CI—NOO	434.90
	O S O	20			
		30			
Па- 536	F F O S O	486.90 35 40	Ha- 539	H N O O S O O S O O O S O O O O O O O O O	442.49
IIa- 537	CI H N O	50 453.35	540		442.49
		60		N N	

TABLE 3-continued

TABLE 3-continued

Oxazole amides (R ³ = NH-Phenyl)	_	Oxazole amides ($R^3 = NH-Phenyl$)
$\bigcap_{N \to \infty} S \bigcap_{N \to \infty} H$	5	
ID Structure MW IIa- F F 468.46	10 II	
541 F H N O	II	$CI \longrightarrow H$
N N N N N N N N N N N N N N N N N N N	20 25	N N N N N N N N N N N N N N N N N N N
Ha- 542 Br 479.35	30 IIa 54	CI 469.35
	40	CI
	45	
IIa- 543 CI 434.90	50 IIa 54	436.44 F———————————————————————————————————
	55	F S O
N N	60	N. N
6	65	

TABLE 3-continued

TABLE 3-continued

Oxazole amides (R ³ = NH-Phenyl)		Oxazole amides (R ³ = NH-Phenyl)
N S N N N N N N N N N N N N N N N N N N	5	N S N N N N N N N N N N N N N N N N N N
ID Structure MW	10	10 ID Structure MW
H 428.51	15	15 H _M 458.49
N N N N N N N N N N N N N N N N N N N	20	
IIa- 548 428.51	30	30
Jaco H N O S O S O	35	Ha- 551 Br H N 497.34
N. N	40	40 N
IIa- 549 0 472.52		1Ia- 50 552 H N
	55	55 O S O N
	60	

TABLE 3-continued

TABLE 3-continued

	Oxazole amides $(R^3 = NH-Phenyl)$			Oxazole amides (R ³ = NH-Phenyl)	
	$ \begin{array}{c} N \\ N \\ N \end{array} $ $ \begin{array}{c} Me \end{array} $.0	$\bigcap_{O} \bigcap_{Me} \bigcap_{O} \bigcap_{Me} \bigcap_{Me}$	
ID	Structure	MW		D Structure M	ſW
Ha- 553	CI	448.93 1	II .5	428 ————————————————————————————————————	8.51
	O S O		:0		
			:5		
IIa- 554	CI H N O	448.93		1a- 57 O H N O S O S O	2.52
	ON NOTE OF THE PROPERTY OF THE		40 45	N. N	
		,		Ó	
Ha- 555	M N	428.51 5	II 5:	Ia- 58 — O H	0.51
		5	i5		
			50		

346
TABLE 3-continued

TABLE 3-continued			TABLE 3-continued	
Oxazole amides (R ³ = NH-Phenyl)			Oxazole amides $(R^3 = NH-Phenyl)$	
$ \begin{array}{c c} & & \\ & $	5		$\bigvee_{O}^{N}\bigvee_{Me}^{H}\bigvee_{O}^{H}$	
ID Structure MW	10	ID	Structure	MW
IIa- 559 Cl 448.93	15	Па- 562	H N O S O	442.49
N N N N N N N N N N N N N N N N N N N	20		N. N	
H 560 H N O	30 35	Ha- 563	Br N	493.38
	40		O S O	
	45			
Ha- 561 HN	50	Ha- 564	H. N.	442.54
	55			
N	60			
0	65		0	

TABLE 3-continued

TABLE 3-continued

	Oxazole amides $(R^3 = NH-Phenyl)$		•		Oxazole amides $(R^3 = NH-P)$	henyl)
	N Me N Me		5		N Me	
ID	Structure	MW		ID	Structure	MW
Ha- 565	F H N O S O		15	IIa- 568	CI	469.35
II.	CI		25		N N	
Ha- 566	H N O		35	IIa- 569	F F H	452.46 =O
	N. N		40			,o
IIa- 567	F—WHO		50 55	IIa- 570	S	418.90 GO
	N N		60			

TABLE 3-continued

TABLE 3-continued

TABLE 3-continued	_	TABLE 5-continued
Oxazole amides $(R^3 = NH-Phenyl)$	_	Oxazole amides (R ³ = NH-Phenyl)
	5	$\bigcap_{N \to \infty} S \bigcap_{N \to \infty} H$
ID Structure MW	10	ID Structure MW
IIa- 571 CI N 0	15	IIa- 574 0 456.52
N N N N N N N N N N N N N N N N N N N	20	N N N N N N N N N N N N N N N N N N N
IIa- 572 Cl 453.35	30 5	Ha- 575 Br H 481.34
	40 45	N N N N N N N N N N N N N N N N N N N
Ha- 573 412.51	50	IIa- 576 H N O
O S N	60	N N

TABLE 3-continued

TABLE 3-continued

	TABLE 3-continued			TABLE 3-continued	
	Oxazole amides $(R^3 = NH-Phenyl)$			Oxazole amides ($R^3 = NH-Phenyl$)	
	N S N		5		
ID	Structure	MW 1	ID	Structure	MW
Ha- 577	CI	432.93 1	IIa- 580	O H N O O S O	456.52
			20	N N	
Ha- 578	H N O	412.51	IIa- 581		444.51
	N N N N N N N N N N N N N N N N N N N		4 0 4 5	N N N N N N N N N N N N N N N N N N N	
IIa- 579	H N O	412.51	50 Ha- 582	Cl H N O	432.92
		6	50	N N N N N N N N N N N N N N N N N N N	

TABLE 3-continued

TABLE 3-continued

		TABLE 5 continued
Oxazole amides (R ³ = NH-Phenyl)		Oxazole amides $(R^3 = NH-Phenyl)$
N S N N N N N N N N N N N N N N N N N N	5	
ID Structure MW	10	ID Structure MW
Ha- 583 412.51	15	Ha- 586 Cl H N O S O S O
No.	25	N N
Ha- 584 F H N O F	30	IIa- 587 CI 453.35
N N N N N N N N N N N N N N N N N N N	40	N N N N N N N N N N N N N N N N N N N
Ha- 585 F——————————————————————————————————	50	588 S N S N S
O S O	60	IIIa- 589

TABLE	4-continued
-------	-------------

Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)

	TABLE 3-continued			
	Oxazole amides $(R^3 = NH-Phenyl)$			
ſ		5		(
ID	Structure MW		ID	
IIa- 590	O H 421.35	15	IIa- 602	
	Ö.	20		
IIa- > 591	380.51	25		,
		30	Ha- 603	
IIa- 592	S N H Br	35		
		40		
		45		
	TABLE 4			
	Oxazole amides ($R^3 = NH-C_3-C_7cycloalkyl$) N S Oxazole amides ($R^3 = NH-C_3-C_7cycloalkyl$) Oxazole amides ($R^3 = NH-C_3-C_7cycloalkyl$) N Oxazole amides ($R^3 = NH-C_3-C_7cycloalkyl$)	50	IIa- 604	
ID	Structure MW	55		
IIa-	402.56			

TABLE 4-continued

Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)

	TABLE 4-continued			
	Oxazole amides ($R^3 = NH-C_3-C_7$ eycloalkyl)			
	$ \begin{array}{c c} & H \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	5		
ID	Structure MW	10		
Ha- 605	392.95		ID	
	NH	15	IIa- 608	
	S N	20		
	CI	25		,
Ha- 606	372.53	30 35	IIa- 609	
		40		
IIa-	404.60	45		
607	NH	50	Ha- 610	
	S N	55		
		60		

TABLE 4-continued

TABLE 4-continued

TABLE 4-continued			TABLE 4-continued	
Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	
N M	Cy 5		$ \begin{array}{c c} & & \\ & $	<i>y</i>)
ID Structure	MW 10	ID	Structure	MW
IIa- 611 NH	372.53 15	Ha- 614	NH	408.95
	20		O S N	
IIa-	404.53 30		CI	
612 NH	35	Ha- 615	NH	388.53
	40			
	45			
IIa- 613 NH	388.53 50	IIa- 616	NH	374.51
	55			
N	60		N	

TABLE 4-continued TABLE 4-continued Oxazole amides ($\mathbb{R}^3 = \mathbb{NH}\text{-}\mathbb{C}_3\text{-}\mathbb{C}_7$ cycloalkyl) Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl) 10 MW IDStructure ${\rm ID}$ Structure MW IIa-617 404.53 IIa-621 402.56 15 20 25 IIa-618 420.53 IIa-622 416.59 30 0/ 35 40 IIa-619 420.53 45 IIa-623 402.56 50 55 Ha-620 416.59 NΗ 60

TABLE 4-continued

TABLE 4-continued

TABLE 4-continued		TABLE 4-continued
Oxazole amides (R ³ = NH-C ₃ -C ₇ cycloalkyl)		Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
$ \begin{array}{c c} & H \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	5	N S Cy Me
ID Structure MW	10	ID Structure MW
HN 374.51	15	IIa- 627 HN 418.56
N S	20	
	25	
IIa- 625 NH	30	HN 418.56
o s	35	N O
	40	
	45	
Па- 626 402.56 NH	50	IIa- 629 432.59
o s	55	S O
N N	60	<u>\</u>

 ${\rm ID}$

Ha-633

IIa-634

Ha-635

IIa-632

Oxazole amides (
$$R^3 = NH-C_3-C_7$$
cycloalkyl)

N

N

N

N

N

Cy

Me

Structure	MW
HN NO S	392.95

TABLE	4-continued
$-1\Delta DLL$	T-COHUHUCU

418.62

390.57

386.56

	TABLE 4-continued		TABLE 4-continued
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	-	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
	$ \begin{array}{c c} & & \\ & $	5	N S N N N N N N N N N N N N N N N N N N
ID	Structure MW		ID Structure
IIa-	404.6		.5
636	NH	20	NH O
	O S	25	N N
		30	so s
		35	NH
		40	
Ha- 637	404.6	4 5	IS N
	NH	50	so s
	S N	55	55 HN HN
	, d	60	50 N

370
TABLE 4-continued

TABLE 4-continued	TABLE 4-continued
Oxazole amides (R ³ = NH-C ₃ -C ₇ cycloalkyl)	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
$ \begin{array}{c c} & H \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ID Structure MW	ID Structure MW
H N 376.50	15 IIa- 644 20 372.53
F N	NH O S
Па- 642 Н N	35 N N O
F	40 45
IIa- 643	17 IIa- 645 50 NH
S N O	55 S N N O

Ha-649

20

25

30

Ha-650

Ha-651

Oxazole amides ($\mathbb{R}^3 = \mathbb{NH}\text{-}\mathbb{C}_3\text{-}\mathbb{C}_7$ cycloalkyl)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Oxazole amides (
$$R^3 = NH-C_3-C_7$$
cycloalkyl)

N

N

N

Cy

Me

Structure

MW

IIa-655

IIa-656

	TABLE 4-continued				TABLE 4-continued
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)				Oxazole amides (R³ = NH-C ₃ -C ₇ cycloalkyl)
	$ \begin{array}{c c} & & \\ & $)	5		$ \begin{array}{c c} & & \\ & $
ID	Structure	MW	10	ID	Structure

	TABLE 4-continued			TABLE 4-continued	
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalky	rI)
	N N N N N N N N N N	5		N S N N N N N N N N N N N N N N N N N N	Су
ID	Structure MW	10	ID	Structure	MW
Ha- 658	374.51 NH	15	Ha- 661	NH	394.92
	o s s	20			
Ha- 659	408.95 NH	30	IIa- 662	CI	388.53
	O N N O	40 45		O S N O	
Ha- 660	422.98 NH	50	IIa- 663	NH	402.56
		60		o s	

TABLE 4-continued	
-------------------	--

MW

434.56

448.59

	TABLE 4-continued		TABLE 4-continued
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalky	vl)	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
,		5 — 5 — 10	N N N N N N N N N N
ID	Structure	MW ID	Structure
IIa- 664	NH	374.51 15 IIa-667	
	O S N	20	NH
Ha-		25 30 390.51	
665	NH	35	
		40 45	
Ha- 666	NH	Ha- 434.56 668 50	NH
	o s	55	o s
	N	60	

TABLE 4-continued

TABLE 4-continued

TABLE 4 continued		TABLE 4 continued
Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)		Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
N M	5	N N N N N N N N N N
ID Structure MW		ID Structure MW
Ha- 669 NH	- 53 15	
	20	N N
	30	0 Ha- 420.53
IIa- 670 H N	25	
N N N N N N N N N N N N N N N N N N N	40	
IIa- 671 H N		IIa- 674 420.53
	5560	0=8=0
	65	5

TABLE 4-continued

TABLE 4-continued

TABLE 4-continued			TABLE 4-continued	
Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	-		Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	
N S N Cy	5		$ \begin{array}{c c} & & H \\ & & N \\ & & & N \\ & & & & N \\ & & & & & & \\ & & & & & & \\ & & & & &$	
ID Structure MW	10	ID	Structure M	мW
H 434.56	15	Ha- 678	43 N O	34.56
P N N	20			
H 420.53	30			
	35	IIa- 679	H N O)4.53
	40			
Па- 677 420.53	45			
	50	Ha- 680	H N O	18.56
N	60			

TABLE 4-continued

Oxazole amides (R ³ = NH-C ₃ -C ₇ cycloalkyl)	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)
$\begin{array}{c c} & & & \\ \hline \\ \hline \\ O & \\ Me \end{array}$	5 N S O Cy
ID Structure MW	10 7 ID Structure MW
H 422.52	15 IIIa- 686 O S O S O S O S O S O S O S O S O S O
N N N N N N N N N N N N N N N N N N N	20 IIa- 687 O N N H
IIa- 682 O H 424.95	30
	IIa- 688 35
IIIa- 683	45 40 NN
IIa- 684 O N H 424.95	50 HN 390.5 55 S
IIa- 685 CI N O=S=O H 438.98	65 N N N N N N N N N N N N N N N N N N N

	TABLE 4-continued			TABLE 4-continued	
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	
	$ \begin{array}{c c} & & \\ & $)		$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	
ID	Structure	MW	ID	Structure	MW
Ha- 690	HN	364.90 15	IIa- 693	NH	364.90
		20)	o' S	
	CI	25		CI	
Ha-	~	376.54)		
Ha- 691	NH O	35	Ha- 694	H O	348.44
	N O	40)	F N	
	s The second sec	45			
Па- 692	HN	358.51 50	Ha- 695	H N	344.48
	N S O	55		N S	
		60)		

TABLE 4-continued

388 TABLE 4-continued

	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	_		Oxazole amides ($R^3 = NH-C_3-C_7$ cycloa	lkyl)
		5			Н Су
ID	Structure MV	10 W	ID	Structure	MW
Ha- 696	376.	15	IIa- 699	NH	360.48
		20		O S N	
		25			
IIa- 697	NH NH		Ha- 700	NH O	380.90
	O S N	40			
		45		CI	
Ha- 698	NH	.48 50	IIa- 701	NH	360.48
	O S	55		o s	
	N O	60			
		65			

TABLE 4-continued

TABLE 4-continued

	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	
		Су	5	N M)
ID	Structure	MW	10 ID	Structure	MW
Ha- 702	NH	376.48	Ha- 705	H N O	376.48
	O S N	;	20	N N	
			25		
IIa- 703	NH	406.50	IIa- 706	\sim	392.48
	O S N N N		40	O S O	
		2	45		
IIa- 704	NH	346.45	50 IIa- 707	Н	376.48
	o s	:	55		
	N O		60	N N	

TABLE 4-continued Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)

TABLE 4-continued					
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)				
	N S Cy Me	5			
ID	Structure MW	10	ID		
Ha- 708	380.44 N O S O	15	Ha- 713		
	N N N N N N N N N N N N N N N N N N N	20			
IIa- 709	O 396.90	25			
		30	IIa- 714		
	CI	35			
Ha- 710	O H N 396.90	40			
		45			
Ha- 711	NH 352.84	50	IIa- 715		
	CI	55			
IIa- 712	346.45 N O S O	60			

	TABLE 4-continued			TABLE 4-continued	
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	
		5		$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	У
ID	Structure	MW 10	ID	Structure	MW
Ha- 716	HN 3	16.43	IIa- 719	HNO	330.45
		20			
Ha- 717	$\underset{I}{\longleftarrow}$	36.84 ₃₀			
	N S	35	Ha- 720	H N O	320.39
	CI	40		F NO	
IIa- 718	NH O	48.49 50	IIa- 721	NH	316.43
	S S	55		o S	

396 TABLE 4-continued

	TABLE 4-continued			TABLE 4-continue	d
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$	cycloalkyl)
	N S S N N N N N N N N N N N N N N N N N	Су	0	N S S	Y Cy
ID	Structure	MW	ID	Structure	MW
Ha-722		2	Ha- 5 725	NH O S	332.42
Ha-723	NH O S N	348.42 3	0 Ha-726 5	NH O S	332.42
Ha- 724	NH O S F	6	O Ha-727	NH O S O S	352.84

398 TABLE 4-continued

	TABLE 4-continued			TABLE 4-continued	
	Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)			Oxazole amides ($R^3 = NH-C_3-C_7$ cycloalkyl)	_
	$ \begin{array}{c c} & & \\ & $	5		N S N Cy	_
ID	Structure MW	10		O ⁻ Me	
Ha- 728	348.42		ID	Structure M	W
	NH	15	IIa- 731	$ \begin{array}{c} H \\ N \end{array} $.42
	o s	20			
		25		N	
		30			
IIa- 729	H 348.42	35	IIa- 732	0 368	.84
		40		CI N S O N	
		45			
IIa- 730	H 364.42	50	IIa- 733	NH NH	.84
		55		o s	
	N	60		N N	

TABLE 5

	TABLE 5	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1001		387.89
Ha-1002	NH NH	368.89
Ha-1003		400.88
Па-1004	O S O S O O O O O O O O O O O O O O O O	461.58
Ha-1005	ON HN O	416.59

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1006		445.63
Ha-1007	O S HN N	431.60
Ha-1008	O S HN	376.52
Ha-1009	O S O O O O O O O O O O O O O O O O O O	394.49

TABLE 5-continued

TABLE 5-continued				
Oxazole amides ($R^3 = NH$ -misc)				
	N Me N R^{3b}			
ID	Structure	MW		
Па-1010	O HN O	348.47		
Па-1011	ON SHIN ON NO	433.57		
Ha-1012		403.55		
Па-1013	ON HIN ON HIN N	397.50		
Ha-1014	O HN O	362.49		

TABLE 5-continued

Oxazole amides	$(R^3 = NH-misc)$
----------------	-------------------

 $^{\mathrm{ID}}$ MW Structure

TABLE 5-continued			
	Oxazole amides $(R^3 = NH-misc)$		
	N N N N N N N N N N		
ID	Structure	MW	
Ha-1019		508.69	
IIa-1020		449.62	
Па-1021	CI N S N N N N N N N N N N N N N N N N N	470.04	
Ha-1022		529.11	

Oxazole amides $(R^3 = NH\text{-misc})$	
N~ ~~	H N

$$R^{3b}$$

 $^{\mathrm{ID}}$

 $\mathbf{M}\mathbf{W}$

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure IIa-1027 362.49

IIa-1028 348.47

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1030	N N N CI	529.11

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$	
ID	Structure	MW
Па-1033		362.49
Па-1034		386.47
Па-1035		406.55
Па-1036	S N N N N N N N N N N N N N N N N N N N	376.52

	TABLE 5-continued	4
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1037		431.56
Ha-1038		419.55
Па-1039	S H	414.57
Па-1040		394.49

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1041		402.54
IIa-1042	,0	438.59
IIa-1043	<i>"</i> °	422.55
IIa-1044		417.57

TEI	72
TABLE 5-continued	
Oxazole amides ($R^3 = NH$ -misc)	
N N N N N N N N N N	
Structure	MW
	348.47
	Oxazole amides (R ³ = NH-misc) N N N N N N N N N N N N N N N N N N

	TABLE 5-continued	4
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1048		392.52
Па-1049		495.65
Ha-1050		446.62
Ha-1051		364.47

	US 9,433,611 B2	
	425	426
	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1052		479.65
Па-1053		453.61
IIa-1054	°	375.47

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1056	o = s N	410.54
	N O	
Ha-1057		500.71
Ha-1058		522.72

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
N & & H \\
N & & N \\
N & & N
\end{array}$$

$$\begin{array}{c|c}
N & & H \\
N & & N \\
N & & N
\end{array}$$

$$\begin{array}{c|c}
N & & M \\
N & & N \\
N & & N
\end{array}$$

Ovazole	amides	$(\mathbb{R}^3 =$	NH-misc)	

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$

 $\mathbf{M}\mathbf{W}$

TABLE 5-continued

Oxazole amides	$(R^3 = NH\text{-misc})$
----------------	--------------------------

Structure IIa-1065

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1068	NH NH NH	417.53
Ha-1069	NH NH	350.44
IIa-1070	NH S NH	388.51
Ha-1071	NH NH	378.49

Oxazole amides $(R^3 = NH\text{-misc})$

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1075	Ĵ	392.52

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

Ha-1078 439.58

Ha-1079 / 447.56

	TABLE 5-continued	44
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-1080	NH O S N	334.44
Па-1081	NH O S	334.44
Ha-1082	NH O S	376.48

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1083 378.49

Па-1084 400.54

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1085

IIa-1086 364.47

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1087

IIa-1088 348.47

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

 ${\rm ID}$ Structure $\boldsymbol{M}\boldsymbol{W}$

IIa-1089 389.52

Ha-1090 597.74

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-1091	NH ON S	439.58
Па-1092	H N O	477.58
IIa-1093	NH NH	438.55

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1094 O 413.50

Ha-1095 378.49

IIa-1096 / 364.47

Oxazole amides $(R^3 = NH-n$	misc)
------------------------------	-------

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Па-1100

Па-1101 O 447.56

Па-1102 O 380.47

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1103 Q 408.52

Ha-1104 430.57

IIa-1105 O 394.49

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

IIa-1106 435.55

Structure

Па-1107 О 378.49

Па-1108 О 475.66 NH

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

Па-1109 O 461.63

Ha-1110 Q 475.66

IIa-1111 447.60

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1112	H N N	462.62
Ha-1113	NH	542.68
	F F	
Па-1114	H O	545.11
	N N N N N N N N N N N N N N N N N N N	

Oxazole amides $(R^3 = NH\text{-misc})$

	TABLE 5-continued	-47
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1117	NH NH NH	469.61
IIa-1118	NH NH S	452.64
IIa-1119	O NH O S	412.94

Oxazole amides $(R^3 = NH\text{-misc})$

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

Па-1122

Па-1123

423.97

TABLE 5-continued

Oxazole amides (R³ = NH-misc)

ID Structure MW

IIa-1124

384.88

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1126 / 366.91

IIa-1127 380.90

382.91

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N R^{3b}	
ID	Structure	MW
IIa-1128	O NH O S	354.86

Oxazole amides $(R^3 = NH\text{-misc})$

IDStructure MW

IIa-1130

IIa-1131 396.94

Oxazole amides $(R^3 = NH\text{-misc})$

IDStructure MW

IIa-1132

IIa-1133 407.97

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH\text{-misc})$	
	$ \begin{array}{c c} N & & H \\ N & & R^{3b} \end{array} $	
ID	Structure	MW
IIa-1134	CI NH O S	519.50

Oxazo.	le amides	$(R^3 =$	NH-misc)

ID Structure MW

IIa-1136 453.07

IIa-1137 O 367.47

IIa-1138 332.47

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{S} \bigcap_{N} \bigcap_{R^{3b}}$	
ID	Structure	MW
IIa-1139	NH NH O	334.44
Па-1140	NH NH	387.55
Па-1141	NH S	372.51
IIa-1142	NH NH	362.49

	TABLE 3-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1143	NH S NH	348.47

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1146 499.08

IIa-1147 O 451.98

IIa-1148 O 387.89

	TABLE 5-continued	
_	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1149	NH S	352.89
	CI	
Па-1150	NH S NH O	376.86
Па-1151	NH S NH	392.93
Па-1152	NH S NH	368.89

	TABLE 5-continued	50
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1153	NH S NH	352.89
IIa-1154	NH S NH S	427.03
IIa-1155	O NH O S	463.62

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure

IIa-1156 399.54

IIa-1157 364.53

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1158 / 364.53

IIa-1159 379.55

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

Па-1160

Па-1161 350.51

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

Па-1162 350.51

IIa-1163 396.53

Oxazole amides $(R^3 = NH\text{-misc})$

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

IDMWStructure

IIa-1166 392.54

IIa-1167 433.60

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure IIa-1168 366.50

IIa-1169 419.61

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

 $^{\mathrm{ID}}$ Structure $\boldsymbol{M}\boldsymbol{W}$

IIa-1170

IIa-1171 394.56

TABLE 5-continued Oxazole amides ($\mathbb{R}^3 = \text{NH-misc}$) ID Structure MW IIa-1172 416.61

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

 $^{\mathrm{ID}}$ MW Structure

IIa-1174

IIa-1175 364.53

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID MW Structure

IIa-1176

IIa-1177 405.59

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

IDStructure $\boldsymbol{M}\boldsymbol{W}$

IIa-1178

IIa-1179 510.73

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure

Па-1180 464.72

Oxazole amides	$(R^3 = NH-misc)$
----------------	-------------------

ID Structure MW

IIa-1182 / 346.50

Па-1183 361.51

Ha-1184 O 370.47

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1185 O 378.49

TABLE 5-continued

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

IIa-1188 O 362.49

Па-1189 О NH

Па-1190 O П

TABLE 5-continued

Oxazole amides ($R^3 = NH-m$	isc)
------------------	--------------	------

ID Structure MW

IIa-1191 Q 513.11

IIa-1192 O 420.64

Па-1193 Q 446.68

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH\text{-misc})$	
	$\bigcap_{N \in \mathbb{N}} \mathbb{N} = \bigcap_{N \in \mathbb{N}} \mathbb{N} = \mathbb{N}$	
ID	Structure	MW
Па-1194	ONH	384.88
	O S	
	CI	
Па-1195	NH	366.91
Па-1196	S NH	392.93
	CI N	

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1197 O 371.44

IIa-1198 351.45

Па-1199 О 360.41

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1200	H _N	350.46
Ha-1201	F N O	364.44
	F NH O	
Ha-1202	F NH NH	405.49
Па-1203	F O	338.40

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1204 O 366.46

Па-1205 O 352.43

IIa-1206 ______ 377.48

TABLE 5-continued

Oxazole amides	$(R^3 =$	NH-misc)
----------------	----------	----------

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1212 372.51

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1214

IIa-1215 401.58

	TABLE 5-continued	5.
	Oxazole amides ($R^3 = NH-misc$)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1216	CI NH ONH S	499.08
Ha-1217		431.56
Ha-1218	0	392.52
	NH O	

	17 ISSEE 5 COMMINGER	
	Oxazole amides ($R^3 = NH$ -misc)	
	N Me R^{3b}	
ID	Structure	MW
IIa-1219	ONH	367.4

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1222	H N O	318.44

	TABLE 3-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1225	HNN	346.50

Oxazole amides $(R^3 = NH-n$	nisc)
------------------------------	-------

ID Structure MW

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1231	NH S NH	348.47

	US 9,433,011 B2	5/
	TABLE 5-continued	56
	Oxazole amides $(R^3 = NH-misc)$	
	$ \begin{array}{c c} & H \\ & N \\ & N \\ & N \\ & N \\ & R^{3b} \end{array} $	
ID	Structure	MW
IIa-1234	NH NH	332.47

	IABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1237		478.66

Oxazole amides $(R^3 = NH\text{-misc})$

IDStructure MW

IIa-1240

IIa-1241 424.52

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1242 399.47

IIa-1243 399.47

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ Structure MW

IIa-1244

IIa-1245 350.44

	TABLE 5-continued	57
	Oxazole amides (R ³ = NH-misc)	
	$ \begin{array}{c c} & H \\ & N \\$	
ID	Structure	MW
Па-1246	NH O	350.44
	\	
IIa-1247	O O NH	396.47
IIa-1248	NH O S N	392.48

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1249	O NH O S	366.44
Па-1250		416.54
	NH ON NH O	
Па-1251	NH ON S	380.47

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

	319	30
	TABLE 5-continued	
	Oxazole amides $(R^3 = NH\text{-misc})$	
	$\bigcap_{N \to \infty} S \bigcap_{N \to \infty} H_{N \to \mathbb{R}^{3b}}$	
ID	Structure	MW
Па-1254	CI	531.08
	NH O	
	N O	
Ha-1255	NH O S	354.86
	CI	
Па-1256	O NH O S O S O S O S O S O S O S O S O S O S	384.88

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH-misc$)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1257	NH O S	368.89
	CI	
IIa-1258	O NH O S NH O S NH O	451.52
IIa-1259	NH O S NH O	387.44

	583 TABLE 5-continued	58
	Oxazole amides (R ³ = NH-misc)	
	N N N R^{3b}	
ID	Structure	MW
Па-1260	NH O	387.44
	o S N	
IIa-1261	NH O S F	352.43
Па-1262	NH O S N F	338.40

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1263 O 384.43

	TABLE 5-continued	50
	Oxazole amides (R ³ = NH-misc)	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{R^{3b}} \bigcap_{R^{3b}} \bigcap_{R^{3b}} \bigcap_{Me} \bigcap_{Me} \bigcap_{N} \bigcap_{Me} \bigcap_{Me$	
ID	Structure	MW
Ha-1266	O NH O S F NO	396.48
W 4065		104.54
IIa-1267	NH O S	421.54
Па-1268	NH O O S	383.47

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	$\bigcap_{O} \bigvee_{Me}^{N} \bigcap_{O} \bigvee_{R^{3b}}^{H}$	
ID	Structure	MW
Ha-1269	NH O S	348.47
	N O	
Ha-1270	NH O S	363.48
IIa-1271	NH O NH O N	372.45

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure

IIa-1273 334.44

IIa-1274 380.47

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

O1-		/D 3	ATTT ! \	
Oxazole	amides	(K' =	NH-misc)	

Structure IIa-1275

IIa-1276 376.48

IIa-1277 350.44

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1278 388.51

IIa-1279 378.49

	507	US 9,433,611 B2	500
	597	TABLE 5-continued	598
		Oxazole amides (R ³ = NH-misc)	
		$ \begin{array}{c} $	
ID		Structure	MW
Ha-1280		NH O O S N	424.57
Ha-1281		NH OS OS	364.47

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

IIa-1284 467.64

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ MWStructure

IIa-1285

Oxazole amides $(R^3 = NH\text{-misc})$

 ID
 Structure
 MW

 IIa-1287
 448.65

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ Structure MW

IIa-1289

Ha-1290 383.47

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-mise)	
	$\bigcap_{N \in \mathbb{N}} \mathbb{R}^{3b}$	
ID	Structure	MW
IIa-1291	NH OS N N	348.47
Ha-1292	ONH ONN ONN N	372.45
Ha-1293	NH O S N	334.44

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1294	NH	391.54
Ha-1295	O NH O S	380.47
	N	
IIa-1296	NH	362.49
	O S N	

TABLE 5-continued

Oxazole amides ($R^3 = NH$ -misc)

ID Structure MW

IIa-1297 NH

ID

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
 & \text{N} \\
 & \text{N$$

IIa-1300 378.49

Structure

IIa-1301 400.54

	TABLE 5-continued	01
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1302	NH O NH O	424.57
Па-1303	NH ON	364.47
IIa-1304	O NH O S	392.52

	617 TABLE 5-continued	63
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-1305	NH NH O	405.52
Ha-1306	NH OS NN N	348.47
Ha-1307	NH ON S	431.60

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1308 417.57

Ha-1309 419.59

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -mise)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1310	NH	389.5
IIa-1311	N NH NH O S	445.6
	N	
Па-1312	NH NH	417.5
	O S S	

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1313	N N NH	432.59
	O S N	
	o o	
IIa-1314	NH ONH	507.70
W 1215		447.64
IIa-1315	NH OS NH OS NN N	447.04

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1318

IIa-1319 428.94

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1320 403.89

Па-1321 392.86

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1322	NH O S N	354.86
	CI	
IIa-1323	NH ONH ON NH ON N	411.95
IIa-1324	N NH NH O S	439.96

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Па-1325

Oxazole amides $(R^3 = NH-misc)$	
N S N R^{3b}	_

	TABLE 5-continued	6.
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1330	O NH O S O S O S O S O S O S O S O S O S O S	384.88
Ha-1331	ONH OS NN CI	412.94
Па-1332	NH O S	425.94

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1333	NH ONH NH	452.02
IIa-1334	cı'	437.99
	NH ONH ONN ONN ONN ONN ONN ONN ONN ONN O	
IIa-1335	NH O S	409.94

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ Structure MW

IIa-1336 466.05

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1338 452.02

IIa-1339 NH 466.05

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure

	647	64
	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{S} \bigcap_{R^{3\ell}} \bigcap$	5
ID	Structure	MW
Ha-1342	NH O S	383.47
Па-1343	NH O S NN NN O	348.47
Па-1344	NH	334.44

ID

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure

380.47 IIa-1346

IIa-1347 419.55

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ MW Structure

IIa-1348 362.49

IIa-1350 388.51

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ Structure MW

IIa-1351

IIa-1352 400.54

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1353	NH O	424.57
	O S N O	
IIa-1354	O NH O S	364.47
IIa-1355	ONH ONH ONH ONNH	405.52

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1356	O NH O NH O NH O NH O NH	348.47
Па-1357	N NH ONH ON NH	403.55
Па-1358	CI NH NH O S	515.08

	TABLE 5-continued	66
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1359	NH NH NH O	494.66
Па-1360	NH OS NH OS N	439.58
IIa-1361	NH O O S NH O	403.89

Oxazole amides ()	$R^3 = NH-misc$
-------------------	-----------------

 ${\rm ID}$ Structure $\mathbf{M}\mathbf{W}$

IIa-1362 392.86

IIa-1363 411.95

IIa-1364

MW

TABLE 5-continued

Oxazole amides ($R^3 = NH$ -misc)

Structure

IIa-1366 370.86

IIa-1367 408.93

MW

TABLE 5-continued

Structure

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1371		424.52
	O S	
	N	
IIa-1372	NH O S	364.47
	N	
IIa-1373	NH OSS	350.44
	N	

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1374 350.44

IIa-1375 O 396.47

Ha-1376 366.44

	671 TABLE 5-continued	67
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1377	NH O N N	440.57
Ha-1378	O NH O S NH O S	380.47
Па-1379	O NH O S	408.52

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1380 364.47

IIa-1381 493.58

Oxazole amides $(R^3 = NH-misc)$

IDMWStructure

IIa-1382

IIa-1383 429.50

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1384 394.49

IIa-1385 418.47

TABLE 5-continued

	TABLE 5-continued				
	Oxazole amides $(R^3 = NH-misc)$				
N N N N N N N N N N					
ID	Structure	MW			
IIa-1386	NH	437.56			
IIa-1387	O NH O S NH O S	426.49			
Па-1388	NH ONH ON S	465.57			

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ Structure MW

IIa-1389

IIa-1390 396.47

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1391

IIa-1392 434.54

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1393 424.52

Ha-1394 446.57

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure IIa-1395

TABLE 5-continued

Oxazole amides	$(R^3 =$	NH-misc)
----------------	----------	----------

	TABLE 5-continued	03
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1400	NH ONH ONH ON NN ON NN ON NN ON NN ON NN ON NN ON NN ON NN ON O	477.63
IIa-1401	N NH O S NH	479.64
IIa-1402	NH ON	449.57

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

 $^{\mathrm{ID}}$ MW Structure

IIa-1403

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Ha-1405 435.55

Structure

IIa-1406 479.64

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

Oxazole amides $(R^3 = NH\text{-misc})$

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

Oxazole amides $(R^3 = NH\text{-misc})$

IDMWStructure

IIa-1413

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1415	CI NH NH	561.10

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

IIa-1419 494.68

Па-1420

	TABLE 5-continued	, ,
	Oxazole amides (R ³ = NH-mise)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1421	NH	369.45
Ha-1422		334.44
113-1422	O S NH	334.44
IIa-1423	NH O S	349.46

TABLE 5-continued

Oxazole amides $(R^3 = NH-misc)$	3C)
----------------------------------	-----

$$\begin{array}{c|c}
 & H \\
 & N \\$$

ID Structure MW

IIa-1424 358.42

IIa-1425 415.47

Ha-1426 404.45

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ MWStructure

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazol	e amic	les (R3	= NF	I-misc)

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure IIa-1433 463.56

Ovazole	amides	$(\mathbb{R}^3 =$	NH-misc)	

ID Structure MW

 $\begin{array}{c} \text{IIa-1436} \\ \hline \\ N \end{array}$

Ha-1437 421.56

IIa-1438 \ 379.48

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	$ \begin{array}{c c} & H \\ & N \\$	
ID	Structure	MW
IIa-1439	H N N N N	426.54
Ha-1440	H N N N	350.44
IIa-1441		435.55
IIa-1442	H N O N N	378.49

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N S R^{3b} R^{3b}	
ID	Structure	MW
Ha-1443	H N O N N	392.48
IIa-1444		366.44
IIa-1445		419.55
IIa-1446	HN H	451.55

	727 TABLE 5-continued	72
	Oxazole amides $(R^3 = NH\text{-misc})$	
	N N N R^{3b}	
ID	Structure	MW
IIa-1447	H N O S O	394.49
Ha-1448	H N O	416.54
	N N N N N N N N N N N N N N N N N N N	
IIa-1449	H N O N	440.57

	TABLE 5-continued	73
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1450	-o N N N N N N N N N N N N N N N N N N N	380.47
IIa-1451	HN OO SOO SOO SOO SOO SOO SOO SOO SOO SOO	408.52
Ha-1452		421.52

	US 9,433,611 B2	
	731	732
	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N Me N	
ID	Structure	MW
Па-1453	H _N	470.64
	O S O	
Ha-1454	N O S O	448.59
IIa-1455		469.61

	733 TABLE 5-continued	7.
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1456		449.62
IIa-1457		419.55
Ha-1458	N N O S O S O O S O O O O O O O O O O O	435.59
IIa-1459		405.52

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1460	N N N N N N N N N N N N N N N N N N N	461.63
Па-1461	N N N N N N N N N N N N N N N N N N N	462.62
Ha-1462		433.57
Ha-1463		448.59

Oxazole amides $(R^3 = NH-misc)$

MW ${\rm ID}$ Structure

IIa-1464

IIa-1465 477.67

 ${\rm ID}$

MW

TABLE 5-continued

	Oxazole amides $(R^3 = NH-misc)$	
7	N_	H N

$$R^{3b}$$

Structure

IIa-1468 455.58

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1469 \ 497.66

$$Ha-1470$$
 $Ha-1470$ 424.59

	743 TABLE 5-continued	74
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1472		489.68
Ha-1473		479.56
Ha-14/3		472.00
IIa-1474		440.52

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

ID Structure MW

IIa-1476 \ \ 395.48

Ha-1477 H 442.54

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	$\bigcap_{\mathrm{Me}}^{\mathrm{N}} \bigcap_{\mathrm{S}}^{\mathrm{H}} \bigcap_{\mathrm{R}^{3b}}^{\mathrm{H}}$	
ID	Structure	MW
IIa-1478		423.54
U- 1470		451.55
Па-1479		451.55
Па-1480		408.48
Па-1481		449.53

	TABLE 5-continued	1.
	Oxazole amides ($R^3 = NH$ -misc)	
	N S N R ^{3b}	
ID	Structure	MW
Ha-1482		424.52
	HN O S O S	
Ha-1483		464.59
Ha-1484		479.56
	N N N N N N N N N N N N N N N N N N N	

TABLE 5-continued		
Oxazole amides (R ³ = NH-misc)		
	N N N N N N N N N N	
ID	Structure	MW
Ha-1485	N H N O	415.47
	N N	
IIa-1486		380.47
Ha-1487		437.56
		137.30

TABLE 5-continued

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

IIa-1488 \ 395.48

Ha-1489 H 442.54

IIa-1490 366.44

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -mise)	
	N N N N N N N N N N	
ID	Structure	MW

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

Ha-1494 H 449.53

 $\begin{array}{c}
H \\
N
\end{array}$ 382.44

Ha-1496 Ha-1

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1497		410.49
IIa-1498	H _N	456.57
IIa-1499	-o H	396.47

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1500 \ 424.52

H 437.52

Oxazole amides $(R^3 = NH\text{-misc})$

 $^{\mathrm{ID}}$ Structure MW

IIa-1502

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Ha-1504 485.61

Structure

IIa-1505 477.63

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-1506		463.60
Ha-1507		465.62
	HN OO OO SOO OO SOO OO SOO OO SOO OO SOO OO	
IIa-1508		449.57

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

 ${\rm ID}$ Structure MW

IIa-1509 451.59

	TABLE 5-continued	
	Oxazole amides ($R^3 = NH$ -misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1512		493.67

TABLE 5-continued

Oxazole amides (R³ = NH-misc)

ID Structure MW

IIa-1514

497.62

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

IIa-1516

Structure

MW

479.64

Ha-1517 471.58

H 440.58

	777	77
	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N R^{3b}	
ID	Structure	MW
IIa-1519	S H N O O O O O O O O O O O O O O O O O O	480.65
Ha-1520		463.56
IIa-1521	HN	364.47

TABLE 5-continued

Oxazole amides	$(R^3 = NH-misc)$
----------------	-------------------

$$\begin{array}{c|c}
N & & H \\
N & & N \\
N & & N
\end{array}$$

$$\begin{array}{c|c}
N & & H \\
N & & R^3$$

	N S R^{3b}	
ID	Structure	MW
IIa-1522	N H N	421.56
Па-1523		379.48
	N N N N N N N N N N N N N N N N N N N	
IIa-1524		388.45
	O S S O	

Oxazole amides $(R^3 = NH\text{-misc})$

ID Structure MW

Ha-1526 H

Ha-1527 407.54

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	$\bigcap_{O} \bigcap_{Me} \bigcap_{S} \bigcap_{O} \bigcap_{R^{3b}} \bigcap_{R^{$	
ID	Structure	MW
Ha-1528		435.55
Ha-1529		378.49
Ha-1530	ff O N	392.48
IIa-1531		433.53

	785 TABLE 5-continued	78
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Па-1532		366.44
	N	
Ha-1533	NH O	419.55
	N N	
IIa-1534	H N O O S O	440.57
	N—	

TABLE 5-continued

Oxazole amides (R ³ = NH-misc)
N S M R^{3b}

Ha-1535 H 380.47

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-1538	H N O N	364.47
Ha-1539	THE HEAD OF THE PROPERTY OF TH	448.59
Ha-1540	N O S O	419.55
IIa-1541		405.52

Oxazole amides $(R^3 = NH-misc)$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

ID Structure MW

Ha-1542 H 461.63

Ha-1543 Ha-1543 462.62

IIa-1544 / 477.67

	793	79
	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1545		461.63
	N	
Ha-1546		424.59
Па-1547	N—————O	383.44

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

IIa-1548 392.41

Ha-1549 Ha-1

Ha-1550 H 400.43

	797	798
	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1551	THE CONTRACT OF THE CONTRACT O	439.51

TABLE 5-continued

Oxazole amides $(R^3 = NH-misc)$

ID Structure MW

IIa-1554 \ 439.55

IIa-1555 409.48

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1557		465.59
IIa-1558		485.58
	THE POST OF THE PO	
IIa-1559		451.56

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	$\bigcap_{O} \bigcap_{Me} S \bigcap_{O} \bigcap_{R^{3b}} R^{3b}$	
ID	Structure	MW
Ha-1560	HN OO OO S	467.61
IIa-1561	F H N O O S O O S O O O O O O O O O O O O O	428.55
Па-1562	S H N O O S O O S O O S O O O O O O O O O O	468.61

	805	US 9,433,611 B2	806
		LE 5-continued	
	Oxazole a	mides (R ³ = NH-misc)	
	N.	Me S Me R^{3b}	
ID		Structure	MW
IIa-1563		NH S	408.59
IIa-1564	CI		485.07
Ha-1565		O H	386.86

TABLE 5-continued

	TABLE 5-continued	
	Oxazole amides (R ³ = NH-misc)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1571		400.88
Ha-1572		441.94
Ha-1573		460.98
Ha-1574		483.97
Па-1575		436.96

	811 TABLE 5-continued	81
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Ha-1576		370.86
IIa-1577	CI N O S N N N O	483.97
IIa-1578	CI N O S O H	446.96
IIa-1579	CI NOSSON NO	400.88
Ha-1580		428.94

	TABLE 5-continued	
	Oxazole amides $(R^3 = NH-misc)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-1581	CI NOSSO NO	441.94
IIa-1582	CI NOS NH	460.98
Па-1583	CI NOSS ON H	386.86
Ha-1584	$CI \longrightarrow V \longrightarrow S \longrightarrow V \longrightarrow V$	425.94
IIa-1585	CI NOSSON HIT	436.96
Па-1586	CI NOS NO	455.96

Oxazoie an	maes (K	= NH-IIIIsc)

ID Structure MW

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

IIa-1591 334.44

Structure

IIa-1592 507.70

 ${\rm ID}$

 $\boldsymbol{M}\boldsymbol{W}$

TABLE 5-continued

Oxazole amides $(R^3 = NH-misc)$

Structure

IIa-1594 447.56

 $^{\mathrm{ID}}$

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

Structure

IIa-1595 403.89

IIa-1596 436.94

IIa-1597 408.31

	TABLE 5-continued	0.
	Oxazole amides ($R^3 = NH$ -misc)	
	$\bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} \bigcap_{R^{3b}} \bigcap_{N \in \mathbb{N}} \bigcap_{N $	
ID	Structure	MW
Ha-1598	S N O N O O N O O O O O O O O O O O O O	377.85
Ha-1599	F N S O CI	391.85
Ha-1600	F N S N N N N N N N N N N N N N N N N N	361.40
Ha-1601		357.43

ID

MW

TABLE 5-continued

Oxazole amides $(R^3 = NH\text{-misc})$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Structure

TABLE 6

Oxazole amides $(R^3 = N$ -cyclo)

ID	Structure	MW
Ha-2001	CH_3	330.45

	827	
	TABLE 6-continued	
	Oxazole amides $(R^3 = N-cyclo)$	
	N N N N N N N N N N	
ID	Structure	MW
Па-2002	CH_3	387.50
Па-2003	CH_3 CH_3 CH_3 CH_3	392.52
Ha-2004	CH_3 N CH_3	372.53
Ha-2005	H_3C O CH_3 N N N N	437.57

MW

TABLE 6-continued

Oxazole amides	$R^3 = N$ -cyclo)
----------------	-------------------

 $^{\mathrm{ID}}$ Structure IIa-2006 463.65 H_3C H₃C

IIa-2007
$$CH_3$$
 479.60 CH_3 CH_3 CH_3

$$\begin{array}{c} \text{IIa-2008} \\ \text{H}_3\text{C} \\ \end{array} \begin{array}{c} \text{S} \\ \text{CH}_3 \end{array} \begin{array}{c} \text{S} \\ \text{O} \\ \text{O} \\ \text{O} \\ \end{array}$$

$$\begin{array}{c} \text{IIa-2009} \\ \text{H}_3\text{C} \\ \\ \text{CH}_3 \end{array}$$

TABLE 6-continued

	IABLE 6-continued	
	Oxazole amides $(R^3 = N\text{-cyclo})$	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2010	$_{\mathrm{CH_{3}}}^{\mathrm{N}}$	495.60
Па-2011	CH_3	465.62
Ha-2012	CH_3	449.62
Па-2013	CH_3 S CH_3 CH_3 CH_3	424.59

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2014	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	404.60
Ha-2015	$O \longrightarrow NH_2$	387.50
Ha-2016	CI N CH_3 N	509.98
Ha-2017	CI S N N N N N N N N N N N N N N N N N N	525.98

TABLE 6-continued

Oxazole amides	$(R^3 = N$	V-cyclo)
----------------	------------	----------

TABLE 6-continued			
Oxazole amides (R ³ = N-cyclo)			
	N N N N N N N N N N		
ID	Structure	MW	
Ha-2021	O O O CH_3 O O CH_3 O	432.54	

IIa-2022 O 417.53 N
$$CH_3$$
 H_2N

TABLE 6-continued			
Oxazole amides $(R^3 = N\text{-cyclo})$			
	N N N N N N N N N N		
ID	Structure	MW	
Ha-2024	$H_{3}C$	408.52	
Ha-2025	$H_{3}C$	432.54	
Па-2026	S N N O O O O O O O O O O O O O O O O O	469.56	
Ha-2027	H_3C S N CH_3 CH_3	376.48	

	TABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
ID	N Cy Cy Cy Structure	MW
IIa-2028	O	360.48
	H_3C	
IIa-2029	0	489.56
	H_3C CH_3 F F F	
IIa-2030	<i>//</i>	433.53
	CH_3 CH_3 CH_3 CH_3	
IIa-2031		473.64
	CH_3 CH_3 CH_3	

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
ID	N Structure	MW
IIa-2032	CH_3 CH_3 CH_3 CH_3 F F F	535.59
IIa-2033	CH_3	495.65
IIa-2034	H_3C CI	472.01
Ha-2035	$H_{3}C$ N O O N	439.54

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides $(R^3 = N\text{-cyclo})$	
	N M N M N M N M N M	Var
ID	Structure	MW
Па-2036	CH_3	457.64
Ha-2037	$H_{3}C$	469.58
IIa-2038	N CH_3 CH_3	388.53
IIa-2039	H_3C CH_3 F F F	519.59

	Oxazole amides $(R^3 = N\text{-cyclo})$	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2040	$_{\mathrm{H_{3}C}}$	481.62

$$H_3C$$
 O N S CH_3

TABLE 6-continued

	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2043	H ₃ C	523.61
	H_3C O	

IIa-2044 O
$$\sim$$
 A37.57 S \sim N \sim N \sim CH $_3$

Oxazole amides $(R^3 = N$ -cyclo)

	1120	
ID	Structure	MW
Па-2046	H_3C	472.01

IIa-2047 O 465.62
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

IIa-2048 O CH₃ CH₃
$$CH_3$$
 CH_3 CH_3

Oxazole amides (R ³	= N-cyclo)
--------------------------------	------------

IIa-2051 O
$$CH_3$$
 CH_3 CH_3

 $^{\mathrm{ID}}$

MW

TABLE 6-continued

Oxazole amides $(R^3 = N-cyclo)$	Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)	١
----------------------------------	---------	--------	-------------------	----------	---

Structure

Oxazole amides $(R^3 = N$ -cyclo)

ID MW Structure

IIa-2055 346.45

IIa-2056 465.62

	TABLE 6-continued	
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2057	H_3C O CH_3 H_3C O CH_3	426.54
Ha-2058	O #	463.56
	H_3C O CH_3 O CH_3	
IIa-2059	O N CH ₃	424.52

 ${\rm ID}$

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure

IIa-2060 376.48

$$H_3C$$
 O
 CH_3

CH₃

IIa-2062
$$CH_3$$
 438.55 H_3C CH_3 CH_3

TABLE 6-continued

Oxazole amides (R ³	= N-cyclo)
--------------------------------	------------

ID Structure MW

IIa-2064 O
$$\sim$$
 405.52 N \sim CH $_3$

CH₃

 ${\rm ID}$

MW

TABLE 6-continued

Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)

Structure

IIa-2066 O 480.63

CH₃

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

	TABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2071	H_3C N O S CH_3	490.46

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

	TABLE 6-continued	
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2073	$_{\mathrm{H_{3}C}}^{\mathrm{O}}$	380.51
	H ₃ C CH ₃	
IIa-2074	H_3C O CH_3 O CH_3	417.53
IIa-2075	H_3C CH_3 N	421.57
IIa-2076	CH_3 O S N O	392.52

	TABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
	N Me N	
ID	Structure	MW
IIa-2077	$H_{3}C$ O	359.49
Ha-2078	$H_{3}C$ N CH_{3}	346.45
IIa-2079		435.59
Ha-2080	H ₃ C CH ₃	422.55
	H_3C CH_3	

TABLE 6-continued

	TABLE 0-continued	
	Oxazole amides $(R^3 = N\text{-cyclo})$	
	$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{N \subseteq V} Cy$	
ID	Structure	M
Ha-2081	H ₂ C	372

TABLE 6-continued

Oxazole amides	$(R^3 = N-cy)$	clo)
----------------	----------------	------

ID Structure MW

IIa-2085 O 350.87
$$\begin{array}{c} & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2088

ONOT

A98.63

IIa-2089 N 375.51
$$\sim$$
 CH₃

 ${\rm ID}$

MW

Oxazole	amides	$(\mathbb{R}^3 =$	N-cvo	clo)

 ${\rm ID}$

MW

TABLE 6-continued

Oxazole amides (R	3 = N-cvclo)
-------------------	--------------

Structure

IIa-2092

IIa-2093 502.10

	TABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
	N S Cy N Cy	
ID	Structure	MW
Па-2094	$_{\mathrm{CH_{3}}}^{\mathrm{CH_{3}}}$	424.59
Ha-2095	CH ₃ N CH ₃ CH ₃	391.56
IIa-2096	CH ₃	378.52

TABLE 6-continued

Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)

ID Structure MW

IIa-2097

467.66

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure

IIa-2099 471.62

IIa-2100 471.62

TABLE 6-continued

Oxazole amides	$(R^3 = N-cyclo)$
----------------	-------------------

IIa-2101 O CH₃ 431.56

ID	Structure	MW
IIa-2104	S CH ₃	435.59
	H_3C	

IIa-2105 O
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

Oxazole amides $(R^3 = N$ -cyclo)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

ID Structure MW

IIa-2107 CH₃ 406.55

	IABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Па-2110	O S CH ₃	449.62

	TABLE 6-continued	
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Па-2113	CH ₃	430.57
	H ₃ C	
Ha-2114	$_{\mathrm{H_{3}C}}$	387.55
Па-2115	\sim	350.87

MW

490.46

TABLE 6-continued

	Oxazole amides $(R^3 = N$ -cyclo)
	N N N N N N N N N N
ID	Structure
IIa-2116	CI

903 TABLE 6-continued		
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Па-2118	CH_3	421.49
Па-2119	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	470.53
IIa-2120	$_{\text{CH}_{3}}$	455.56
Ha-2121	$_{\rm F}$ $_{\rm CH_3}$	425.53

MW

TABLE 6-continued

	Oxazole amides $(R^3 = N\text{-cyclo})$
	N N N N N N N N N N
ID	Structure
Ha-2122	

$$\begin{array}{c} \text{IIa-2123} \\ \\ \text{S} \\ \\ \text{CH}_3 \\ \\ \text{CI} \end{array}$$

Oxazole amides $(R^3 = N$ -cyclo)

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

909		
	TABLE 6-continued	
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2127	$_{N}$	421.57
Ha-2128	CH_3 CH_3 CH_3 CH_3	392.52
IIa-2129	CH ₃ N O CH ₃ CH ₃	359.49

Oxazole amides $(R^3 = N$ -cyclo)

IIa-2130

O

Structure

MW

IIa-2130

O

CH₃

H₃C

IIa-2131 434.61
$$N$$
 O N O CH_3 H_3C

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure

IIa-2132 422.55

$$_{N}$$
 $_{N}$
 $_{N}$

IIa-2133 439.56

TABLE 6-continued

Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)	
Onazoic	annucs	(10 -	14-Cyclo)	

	N S Cy N Cy	
ID	Structure	MW
Ha-2134	H ₃ C N	373.52
	$_{\rm H_3C}$ $_{\rm CH_3}$	
Ha-2135	$H_{3}C$	358.51
Ha-2136	CH ₃	378.50

Oxazole amides (R	3 = N-cvclo)
-------------------	--------------

IIa-2138 O
$$CH_3$$
 H_3C

	THE COMMISSION	
	Oxazole amides $(R^3 = N\text{-cyclo})$	
	N N N N N N N N N N	
ID	Structure	MW
Па-2140	$H_{3}C$	422.55

IIa-2142
$$\begin{array}{c} O \\ S \\ N \\ O \\ CH_3 \end{array}$$

 ${\rm ID}$

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Oxazole amides $(R^3 = N$ -cyclo)

	We	
ID	Structure	MW
IIa-2145	O S CH ₃	390.51

362.45

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2147

CH3

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2149 O 378.45

Ha-2150 434.52

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

$$\begin{array}{c|c}
 & Cy \\
 & Me
\end{array}$$

Structure

IIa-2152 376.48

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2153 441.53

H₃C
$$\longrightarrow$$
 CH₃ \longrightarrow CH₄ \longrightarrow CH₄

Oxazole amides $(R^3 = N$ -cyclo)

ID	Structure	MW
Ha-2155	H ₃ C	433.53
	, in the second	
	o S	
	O CH ₃	
	N	
	H ₃ C —	

374.51

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2158 N
$$CH_3$$
 CH_3 CH_3 CH_3

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure 437.57

TABLE 6-continued Oxazole amides (R³ = N-cyclo)

				$\left(\begin{array}{c} Cy \end{array}\right)$
				[Cy]
١	N	\sim	\sim	_N/

Oxazole amides $(R^3 = N$ -cyclo)

438.55

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Па-2165	H_3C O O CH_3 CH_3	388.53
IIa-2166	$_{ m H_3C}$ $_{ m CH_3}$	389.52
	N O S CH ₃	
IIa-2167	H ₃ C	360.48
	$_{\rm H_3C}$	

TABLE 6-continued

Oxazole amides (R	3 = N-cvclo)
-------------------	--------------

ID Structure MW

Ha-2168 H₃C 433.53

Ha-2169 437.57

Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

ID Structure MW

IIa-2170

CI

N

CH3

Oxazole amides $(R^3 = N$ -cyclo)

IIa-2172

CH₃

H₃C

N

CH₃

CH₃

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2174	N N O O S CH ₃	451.59

418.52

 $^{\mathrm{ID}}$

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

IIa-2177 455.56

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2178

H₃C

O

N

CH₃

CCH₃

Oxazole amides $(R^3 = N$ -cyclo)

IIa-2180 H₃C 433.53

IIa-2181
$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\$$

Oxazole amides $(R^3 = N$ -cyclo)

 ${\rm ID}$ Structure MW

IIa-2182

$$H_3C$$
 N
 CH_3
 H_3C
 CH_3

IIa-2183 362.45

Oxazole amides $(R^3 = N$ -cyclo)

II Structure MW

II a-2184O

O

S

CH3

455.54

	TABLE 6-continued	
	Oxazole amides (R³ = N-cyclo)	
	N S N Cy N Cy N Cy	
ID	Structure	MW
IIa-2186	CH ₃	389.52
	$_{\rm H_3C}$ $_{\rm CH_3}$	
IIa-2187	O S CH ₃	360.48
IIa-2188	O S CH ₃	394.92

Oxazole amides $(R^3 = N$ -cyclo)

 ${\rm ID}$ Structure MW

IIa-2189

434.52 IIa-2190

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2191 H₃C 479.56

TABLE 6-continued

Oxazole		

IIa-2193 H₃C CH₃ 511.65

CH₃

IIa-2194 CI 532.06

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2195

CH₃

CH₃

CH₃

CH₃

IIa-2196

421.52

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure IIa-2197 408.48

IIa-2198 497.62

TABLE 6-continued Oxazole amides (R³ = N-cyclo) Structure MWIIa-2199 435.55 $.\mathrm{CH}_3$

IIa-2200
$$\begin{array}{c} O \\ CH_3 \end{array}$$

TABLE 6-continued

Oxazole amides (R ³	= N-cyclo)
--------------------------------	------------

ID Structure MW

Ha-2201 382.49

IIa-2202 $_{
m CH_3}$ 362.49

IIa-2203 380.47

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

Ha-2204 423.54

IIa-2205 394.50

TABLE 6-continued				
Oxazole amides (R ³ = N-cyclo)				
	N S Cy Cy			
ID	Structure	MW		
IIa-2206	O CH ₃	348.42		
IIa-2207	CH ₃	375.49		
IIa-2208	CH ₃	394.45		
	CH ₃			

TABLE 6-continued Oxazole amides (R ³ = N-cyclo)				
ID	Structure	MW		
IIa-2209	CH ₃ N O CH ₃ O CH ₃	412.51		
Па-2210	H_3C O O S O CH_3 O CH_3	392.52		
Па-2211	H ₃ C O	449.53		

TABLE 6-continued

Oxazole amides	$R^3 = N$ -cyclo)
----------------	-------------------

ID Structure MW

IIa-2212

H₃C

O

CH₃

$$_{\mathrm{H_{3}C}}$$

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2215

CH₃

375.45

IIa-2217 362.45

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2218	H_3C N	481.62
IIa-2219	H_3C CH_3 N N N O CH_3 N O CH_3	481.62
IIa-2220	H ₃ C CH ₃	424.52

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides $(R^3 = N\text{-cyclo})$	
ID	N Cy Cy Cy Cy Structure	MW
IIa-2221	CH ₃	481.62
	H_3C N N O O S O CH_3	
IIa-2222	H ₃ C	391.49
	N N N O S O CH ₃	
IIa-2223	ON CH ₃	378.45

	7993 TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
ID	N Structure	MW
IIa-2224	Structure	MW 467.59
113-2224	N N N O CH ₃	407.39
IIa-2225	H_3C CH_3 O CH_3 O CH_3 O	404.53
IIa-2226	CH ₃ N N N N N N N N N N N N N	405.52

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

Ha-2227 CH₃ 428.51

IIa-2228 CH₃ 408.52 $H_{3}C \longrightarrow O$

Oxazole amides (F	$R^3 = N$ -cyclo)
-------------------	-------------------

ID Structure MW

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

Ha-2231 426.50

IIa-2232 CH₃ 391.45

TABLE 6-continued

	TABLE 6 continued	
	Oxazole amides (R ³ = N-cyclo)	
	N S N	
ID	Structure	MW
IIa-2233	N N N O CH ₃	469.56

ID

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

Structure

TABLE 6-continued

Oxazole amides ($R^3 = N$ -cyclo)	Oxazole	amides	$(R^3 = N-cyc)$	clo)
------------------------------------	---------	--------	-----------------	------

 $^{\mathrm{ID}}$

440.52

MW

Oxazole amides $(R^3 = N$ -cyclo)

			$\binom{N}{N}$ Cy
			L Cy
TAT.	\sim	\sim	.19

IDStructure MW IIa-2239 497.62 CH_3

380.47

TABLE 6-continued

Ovazole	amides	$(\mathbb{R}^3 =$	N-cyclo)

IIa-2241 H₃C 407.49

394.45

 $^{\mathrm{ID}}$

MW

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

	(Cy)
\	$N_{\bullet} \wedge \wedge \wedge N_{\bullet}$
//	

Structure

$$\text{Ha-}2244$$
 H_{3}C 435.55

	Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)	
--	---------	--------	-------------------	----------	--

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

ID Structure MW

IIa-2245

A70.55

394.49

Oxazole amides $(R^3 = N$ -cyclo)

_	$\binom{C_{V}}{}$
$N \sim$	
	5

TABLE 6-continued

Oxazole	amides	$(\mathbb{R}^3 =$	N-cyclo)

IIa-2249 Structure MW

CH₂

O—CH₃

499.59

IIa-2250 392.48

IIa-2251 CH₃ 412.51

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides $(R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2252	H ₃ C O	449.53
	CH_3	
IIa-2253	O S O CH ₃	390.51
Па-2254	CH ₃	410.50
	CH_3	

TABLE 6-continued		
	Oxazole amides ($R^3 = N$ -cyclo)	
	$\bigcap_{O} \bigvee_{Me} S \bigcap_{O} \bigvee_{Cy} S$	
ID	Structure	MW
Па-2255	N CH ₃ O	375.45
	CH ₃	
Ha-2256		453.56
	O CH ₃	
Ha-2257		362.45

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

Ha-2258 424.52

Ha-2259 404.53

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2260	H_3C N	481.62
IIa-2261	$_{\mathrm{CH_{3}}}^{\mathrm{N}}$	391.49
	N N O S O CH ₃	
Па-2262	CH ₃ O N O S	378.45
	$_{\mathrm{CH_{3}}}^{\mathrm{N}}$	

TABLE 6-continued

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2263

IIa-2264 466.60

Oxazole amides $(R^3 = N$ -cyclo)

 ${\rm ID}$ Structure MW

IIa-2265

IIa-2266 376.48

Oxazole amides $(R^3 = N$ -cyclo)

ID Structure MW

IIa-2267 Cl 491.97

IIa-2268 408.50

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Ha-2269	H ₃ C O O O O O O O O O O O O O O O O O O O	453.49
Ha-2270	N O S O CH ₃	394.47
IIa-2271	N O	414.46

Oxazole amides $(R^3 = N$ -cyclo)

 ${\rm ID}$ Structure MW

IIa-2272

Oxazole amides $(R^3 = N$ -cyclo)

 ${\rm ID}$ Structure MW

IIa-2274

382.41 IIa-2275

1039 TABLE 6-continued			
	Oxazole amides (R ³ = N-cyclo)		
	N S Cy Cy Me		
ID	Structure	MW	
IIa-2276	N O CH ₃	471.55	
IIa-2277	N O O CH ₃	470.57	
IIa-2278	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	522.45	

	TABLE 6-continued	
	Oxazole amides (R ³ = N-cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
Па-2279	$\begin{array}{c} O \\ O \\ S \\ O \\ CH_3 \end{array}$	430.91
IIa-2280	$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	468.96
IIa-2281	CI N CH ₃	398.87
Па-2282	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	480.03

TABLE 6-continued

	TABLE 6-continued	
	Oxazole amides ($R^3 = N$ -cyclo)	
	N N N N N N N N N N	
ID	Structure	MW
IIa-2283	CI O S O N	578.09
IIa-2284	F N O N N F	475.52
IIa-2285	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	506.00
IIa-2286	F N CH ₃ CO N F F F	525.53

TABLE 6-continued

Oxazole amides ($R^3 =$	N-cyclo)	١
------------------	---------	----------	---

ID	Structure	MW
Ha-2287	O O CH ₃ F	514.62

IIa-2288
$$H_3C \longrightarrow S \longrightarrow O$$

$$CH_3$$

	TABLE 6-continued		
	Oxazole amides $(R^3 = N\text{-cyclo})$		
	N S Cy		
ID	Structure	MW	
Ha-2290	CH ₃	392.52	
	CH_3		
IIa-2291	$_{ m H_3C}$	433.57	
	H_3C O		

TABLE 7

	Phenmethylene-Thiazole Alkanoic Acids ($R^{\circ} = OH$)	
ID	Structure	MW
IIb-1	H ₃ C O Br O OH	402.3
IIb-2	H_3C O	409.5

TABLE 7-continued

TABLE 7-continued			
Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)			
ID	Structure	MW	
IIb-3	CI S OH	372.8	
IIb-4	H ₃ C H ₃ C	395.5	
IIb-5	$\bigcup_{\mathrm{CH}_3}^{\mathrm{O}} \bigvee_{\mathrm{S}} \bigvee_{\mathrm{HO}}^{\mathrm{N}} \bigvee_{\mathrm{HO}}^{\mathrm{O}}$	456.5	
IIb-6	O N S H ₃ C	337.4	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)		
ID	Structure	MW	
IIb-7	H_3C O CH_3 S N O	423.6	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW
IIb-11	S NO	412.5

Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)			
ID	Structure	MW	
IIb-15	H_3C H_3C H_3C H_3C	397.5	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)		
ID	Structure	MW
Пь-19	O N S CH ₃	335.4
IIb-20	O OH OH S Br	372.3
IIb-21	CI S OH	362.3
IIb-22	CI S S	362.3
Пь-23	N OH	337.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-24	F OH	311.4

IIb-26 421.6
$$H_{3}C$$

IIb-27 OH 349.5 OH
$$_{\rm N}$$
 $_{\rm S}$ $_{\rm CH_3}$ $_{\rm H_3C}$ $_{\rm CH_3}$

TABLE 7-continued

TABLE 7-continued Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)		
D	Structure	MW
Ib-28	H_3C O	443.5
(b-29	H ₃ C O N S OH	365.5
Ib-30	ON SOH	369.5
IIb-31	OH N:=O	338.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-32	H ₃ C OH	337.4

IIb-35 O OH OH
$$_{\rm N}$$
 S $_{\rm CH_3}$

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)		
ID	Structure	MW
IIb-36	HO \sim	397.4

IIb-37 O 396.4
$$\bigcap_{N \in \mathbb{N}} \mathbb{N}$$

IIb-39 OH OH OH
$$_{\rm CH_3}$$
 OH $_{\rm CH_3}$

TABLE 7-continued

TABLE 7-continued		
D	Phenmethylene-Thiazole Alkanoic Acids (\mathbb{R}^3 = OH) Structure	MW
b-40	OH S S N S	307.4
b-41	O N OH	399.5
Ib-42	H_3C HO HO HO HO	369.4
IIb-43	H_3C H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3	421.6

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-44	O O O O O O O O O O O O O O O O O O O	362.3

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)		
ID	Structure	MW
IIb-48	OH OH	413.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-52	H ₃ C S	353.5

IIb-54 O 457.6
$$\begin{array}{c} O \\ O \\ N \\ S \end{array}$$

IIb-55 OH
$$_{\rm H_3C}$$

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-56	$_{\mathrm{HO}}$ $_{\mathrm{O}}$ $_{\mathrm{H}_{3}\mathrm{C}}$ $_{\mathrm{O}}$ $_{O$	411.5

IIb-57 O 410.5 OH
$$H_2N$$
 OH

IIb-58 OH OH
$$_{\rm H_3C}$$
 OH $_{\rm H_2C}$ OH $_{\rm H_2C}$

IIb-59 O 383.4 OH
$$_{\rm H_3C}$$
 $_{\rm H_3C}$

TABLE 7-continued

1077

TABLE 7-continued			
	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$		
ID	Structure	MW	
IIb-60	$H_{3}C$ CH_{3} $H_{3}C$ CH_{3} $H_{3}C$ CH_{3} CH_{3} CH_{3}	435.6	
IIb-61	, 0	353.4	
110-01	OH OH OH OH	333.4	
IIb-62	Q.	338.4	
	O N: S		
IIb-63	О	460.5	
	F S S		
IIb-64	$_{\mathrm{H_{3}C}}$	435.6 O	

TABLE 7-continued

TABLE 7-continued Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)		
ID	Structure	MW
IIb-65	OH S N OH	323.4
IIb-66	H_2C S N OH OH	349.4
IIb-67	H_2C N	363.5
IIb-68	H_3 C O HO O O O O O O O O O	448.5
IIb-69	Cl S N HO	376.3
IIb-70	CI S OH	376.3

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-71	$H_{3}C$ O	434.5
IIb-72	O CH ₂ O O CH ₂	448.6
IIb-73	HO N N N N N S	448.6
IIb-74	OH ON S S N	448.6

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-75	$\begin{array}{c} CH_3 \\ O \\ \end{array}$	353.4
IIb-76	$H_{3}C$ N S N O	364.5
IIb-77	CI S S S S HO	478.9
Пь-78	HO O S S S S S S S S S S S S S S S S S S	344.4
IIb-79	OHOH	358.4

TABLE 7-continued

TABLE 7-continued		
ID	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH) Structure	MW
IIb-80	N N N N N N N N N N N N N N N N N N N	344.4
	S S S	
IIb-81	O OH	345.4
	S N	
IIb-82		358.
	S S S	
VI. 02	но	350
IIb-83	ОН	359.
	$s = \int_{S}^{N} \int_{N}^{O}$	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$		
ID	Structure	MW	
IIb-84	$_{\mathrm{HO}}$ $_{\mathrm{S}}$ $_{\mathrm{N}}$ $_{\mathrm{OH}}$	339.4	
IIb-85	CI S OH	362.3	
IIb-86	H_3C N CH_3	350.5	
IIb-87	H_3C O	365.5	
IIb-88	O OH N S N S N S N S N S N S N S N S N S N	309.4	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
ПЬ-89	H ₃ C O O O O O O O O O O O O O O O O O O O	351.4
Ib-90	F OH N HOO	446.5
IIb-91	S OH	477.0
IIb-92	H_3C O CH_3	451.6
ПЬ-93	H_2C O	349.4

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)		
ID	Structure	MW
IIb-94	H ₃ C OH	413.5
IIb-95	OH OH	433.9
IIb-96	CI OH NS S	433.9
IIb-97	$H_{3}C$ O	413.5
IIb-98	O N O O O O O O O O O O O O O O O O O O	433.9

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-99	ON SOUTH ON	413.5
Пь-100	$_{ m H_2C}$	433.9
	O N S	
IIb-101		433.9
	ON NOH	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)			
ID	Structure	MW	
ПЬ-102	H_2C CI CI	464.0	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW
IIb-105	CH ₃	478.0
IIb-106	CH ₃ OH OH OH	395.5
IIb-107	H_3C O CH_3 O	409.5
Пь-108	$H_{3}C$ O CH_{3}	465.6

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-109	CH ₂ O OH	363.5
Пь-110	H ₃ C OH OH	427.5
IIb-111	CI OH	448.0
IIb-112	CI OH OH	448.0
IIb-113	$H_{3}C$	O 427.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-114	OH OH	448.0

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-117	O N OH	448.0
IIb-118	H ₃ C O OH	478.0
IIb-119	H ₃ C OH	478.0

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-120	CH ₃	492.0

IIb-122 OH 418.3 OH
$$\sim$$
 A18.3 OH \sim CH $_3$

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-123	O OH $O \longrightarrow OH$ $O \longrightarrow S$ $O \longrightarrow$	432.3

IIb-124 OH 395.5 OH
$$_{\rm N}$$
 $_{\rm S}$ $_{\rm CH_3}$

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-126	O OH S CH ₃ OH	465.3
IIb-127	S NO CH ₃	387.5
IIb-128	S OH	343.8
IIb-129	O—:N—S O—:N—O CH ₃	352.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-130	OH OH OH CH_3 CH_3	351.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-133	O OH $O \longrightarrow OH$ $O \longrightarrow S$ $O \longrightarrow$	446.3

TABLE 7-continued

1115

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-136	OHOH $OHOH$ $OHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHO$	460.4
IIb-137	OHOH O N S H_3C O H_3C	460.4
IIb-138	O OH	381.4

	1117	
	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-139	OH S S	416.3
IIb-140	O CH ₃	337.4
IIb-141	O OH	432.3

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-143	О—СН ₃ О—СН ₃ О—СН ₃ О В В В В В В В В В В В В В В В В В В	367.4
IIb-144	H_3C O	381.5
IIb-145	Br O O OH	372.3
IIb-146	H ₃ C O O S S S	466.6
IIb-147	H_3C O S N HO O O O O O O O O O O	381.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-148	H_3C O	367.4
IIb-149	F F	375.4
IIb-150	OH S F	359.8
IIb-151	OH OH	351.4
IIb-152	F O O O O O O O O O O O O O O O O O O O	359.4
IIb-153	$\begin{array}{c} CH_3 \\ O \\ O \\ O \end{array}$	365.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-154	O OH ON S ON S ON N ON N	491.0
IIb-155	H_2C H_3C O	379.5
IIb-156	H_2C H_3C O	393.5
IIb-157	но	363.5
	H_3C	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-158	$H_{3}C$ S N O	442.:
Пь-159	OH S NO HO	368.
IIb-160		352.
IIb-161	OH S N OH	309.
IIb-162	O-N-HO	352.
IIb-163	OH OH SHOO	351.

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-164	OH SCH ₃	442.:
IIb-165	$\bigcap_{CH_3}^{O} \bigcap_{S} \bigcap_{S} \bigcap_{N} \bigcap_{HO}^{O}$	442
IIb-166	OH S HO	323.
IIb-167	S N O OH	412.
IIb-168	S N OH	412.
IIb-169	HO HO N	337.

TABLE 7-continued

TABLE 7-continued		
ID	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH) Structure	MW
IIb-170	OH NO	337.4
IIb-171		338.4
	O=N+OH	
IIb-172	HOOO	349.4
IIb-173	H ₃ C OH OH	325.4
IIb-174	H ₃ C O O O OH	456.5
Шь-175	$_{\mathrm{H_{3}C}}$ $_{\mathrm{O}}$ $_{\mathrm{O}}$ $_{\mathrm{O}}$ $_{\mathrm{O}}$ $_{\mathrm{O}}$	456.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-176	H ₃ C O N N N N N N N N N N N N N N N N N N	456.5
ПЬ-177	HO' HO' HO'	430.5
IIb-178	F S N O N HO	430.5
IIb-179	F S N N OH	430.5
ПЬ-180	S N O OH OH	446.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-181	S N O O O O O O O O O O O O O O O O O O	446.5
IIb-182	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	472.5
IIb-183	$\bigcup_{CH_3}^{O} \bigcup_{S}^{N} \bigcup_{HO}^{O} \bigcup_{O}^{O}$	440.5
IIb-184	CH_3	440.5
IIb-185	$\bigcap_{CH_3}^{O} \bigcap_{S} \bigcap_{N} \bigcap_{OH}^{O}$	440.5
IIb-186	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	456.5
IIb-187	CH ₃	456.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-188	S HOOO	456.5
IIb-189	OH OH	456.5
IIb-190	OH OH	456.5
IIb-191	H ₃ C O N O N O O O O O O O O O O O O O O O	456.5
IIb-192	H ₃ C O O N O O O N	456.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-193	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	488.5
IIb-194	H_3C O N O	488.5
ПЬ-195	H_3C O N O	472.5
IIb-196	H_3C O S S S H_3C O	472.5
IIb-197	H_3C O S	472.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-198	HO O N N N N N N N N N N N N N N N N N N	444.5
ПЬ-199	$\sum_{S} \sum_{S} \sum_{N} OH$	444.5
Ib-200	CI N N O	446.9
IIb-201	CI S N O	446.9
IIb-202	CI NOH	446.9

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-203	CI NOH OH	462.9
IIb-204	CI N HO OH	462.9
IIb-205	S N O	442.5
IIb-206	HO O	442.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-207	S N O CH ₃	442.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-209	HO OH	458.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-212	$\begin{array}{c} & & \\$	486.6
IIb-213	HO O H ₃ C O	484.6
IIb-214	OH N OH H ₃ C O	484.6
IIb-215	HO S S S N S N S N S N S N S N S N S N S	470.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
Пь-216		470.5
ПЬ-217	HO S S S S N	486.5
IIb-218	CH ₃ CH ₃ OH N N HO OH	442.5
IIb-219	OH OH	357.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-220	HO O N S	321.4
IIb-221	HO O O N S S S S	321.4
IIb-222	H_3C O CH_3 O O CH_3 O	465.6
IIb-223	H ₃ C CH ₃ HO O	479.7

TABLE 7-continued

	IABLE /-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-224	H_3C O CH_3 O O CH_3 O	465.6
IIb-225	H_3C O CH_3 O O CH_3 O	479.7
IIb-226	H_3C O CH_3 O O CH_3 O	479.7

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-227	H_3C O CH_3 O	493.7
IIb-228	HO O N S	325.4
IIb-229	H_3 C C H $_3$	349.5
IIb-230	F H O OH OH	345.8
IIb-231	S S OH	350.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-232	O N HOO	364.4
IIb-233	OH OH	378.5
IIb-234	OH OH	406.5
Пь-235	O O O O O O O O O O O O O O O O O O O	476.
IIb-236	O N N OH	364
IIb-237	O CH ₃ OH	378.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-238	S CH ₃	392.5
IIb-239	O OH OH CH ₃	406.5
IIb-240	OH CH ₃ CH ₃	406.5
IIb-241	O OH N CH ₃	406.5
IIb-242	O OH CH ₃ CH ₃	392.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-243	O OH OH	440.5
IIb-244	O OH N O S CH ₃	424.6
IIb-245	O OH N N N N NH2 S S S	421.5
IIb-246	OH ON NH2	407.5
IIb-247	O O O O O O O O O O O O O O O O O O O	479.6

	US 9,433,611 B2		
	1163 TABLE 7-continued	11	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW	
IIb-248	H ₃ C OH NO	364.4	
IIb-249	H ₃ C OH	378.5	
IIb-250	H ₃ C N N	392.5	
IIb-251	H ₃ C OH	420.6	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)			
ID	Structure	MW	
IIb-252	H ₃ C O N N HO	490.7	

IIb-253
$$\begin{array}{c} CH_3 \\ H_3C \\ O\\ O\\ \end{array}$$

IIb-254
$$\begin{array}{c} CH_3 \\ \\ H_3C \\ \\ O \\ \end{array}$$

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-256	H ₃ C OH OH	420.6
IIb-257	H ₃ C CH ₃ CH ₃ O OH	420.6
HIb-258	CH ₃ CH ₃ O OH	420.6
IIb-259	H ₃ C OH	454.6

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
D	Structure	MW
IIb-260	H ₃ C CH ₃ OH OH	406.:
b-261	H ₃ C OH	438.
Ib-262	H_3C O	435.
Ib-263	H ₃ C O OH	421.

TABLE 7-continued

TABLE 7-continued		
- ID	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	MW
ID IIb-264	H ₃ C O OH	493.6
IIb-265	H ₃ C O OH OH	380.4
IIb-266	H ₃ C O O O O O O O O O O O O O O O O O O O	394.5
IIb-267	H ₃ C O OH	408.5
IIb-268	$H_{3}C$ O	436.6

TABLE 7-continued

TABLE 7-continued Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)		
ID	Structure	MW
IIb-269	H ₃ C O OH CH ₃	394.5
ПЬ-270	H ₃ C O OH OH	408.5
IIb-271	H_3C OH CH_3	422.5
IIb-272	H_3C O OH CH_3 CH_3	436.6
IIb-273	H ₃ C O OH CH ₃	436.6

TABLE 7-continued

	TABLE 7-continued	
Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW
IIb-274	H_3C O OH CH_3 CH_3	436.6
IIb-275	H_3C O CH_3 CH_3	422.5
IIb-276	H ₃ C O OH OH OH	470.6
IIb-277	H_3C O O O O O O O O O O	454.6
IIb-278	H_3C O OH OH OH OH OH OH OH	451.5

	TABLE 7-continued Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW	
IIb-279	H_3C O OH O NH_2 OH OH OH OH OH OH OH OH	437.5	
IIb-280	H_3C O	410.5	
IIb-281	H_3C OH N OH N OH	424.5	
IIb-282	H_3C O O N O	438.5	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)			
ID	Structure		MW
IIb-283	H ₃ C O N S	CH ₃ OH OH	424.5

IIb-286
$$H_3C \longrightarrow 0 \\ H_3C \longrightarrow 0 \\ OH$$

TABLE 7-continued

	TABLE 7-continued		
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW	
IIb-287	H_3C O	466.6	
IIb-288	H_3C O	466.6	
IIb-289	H_3C O	452.6	
IIb-290	H ₃ C O OH OH	484.6	

	TABLE 7-continued	
D	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$ Structure	MW
IIb-291	H_2N O	481.6
(Ib-292	H_3C O	467.5
IIb-293	H ₃ C O OH OH	424.5
Пь-294	H_3C O	438.5

TABLE 7-continued

TABLE 7-continued Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)		
ID	Structure	MW
IIb-295	H ₃ C O OH OH	452.6
IIb-296	H ₃ C O O O O O O O O O O O O O O O O O O O	480.6
IIb-297	H_3C O	438.5
IIb-298	H_3C O	452.6
ПЬ-299	H ₃ C O OH OH	466.6

TABLE 7-continued			
Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)			
ID	Structure	MW	
IIb-300	H_3C H_3C O	480.6	
IIb-301	H_3C O	480.6 $ m H_{3}$	
IIb-302	H ₃ C OH OH	$_{ m H_3}$	
IIb-303	H_3C O	466.6	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)		
ID	Structure	MW	
Hb-304	H_3C O	498.6	
IIb-305	H_3C O NH_2 O	495.6	
IIb-306	O O O O O O O O O O O O O O O O O O O	321.4	
IIb-307	S N OH	335.4	
IIb-308	$\begin{array}{c} \text{HO} \\ \text{HO} \\ \text{O} \\ \end{array}$	442.5	

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)		
ID	Structure	MW
IIb-309	O'-N'- S-NOOH	354.4

TABLE 7-continued

Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)		
ID	Structure	MW
IIb-313	S OH OH OH OH S	446.5
IIb-314	HO S HO HO	339.4
IIb-315	0 	448.6
	HO N N S S CH ₃	
IIb-316	$\begin{array}{c} O \\ O \\ S \\ \end{array}$ $\begin{array}{c} O \\ O \\ \end{array}$ $\begin{array}{c} O \\ O \\ \end{array}$ $\begin{array}{c} O \\ O \\ \end{array}$	446.5
IIb-317	OH S S	325.4

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-318	HO N S	446.5
IIb-319	HO N S S	428.5
IIb-320	$H_{3}C$ O	434.5
IIb-321	HO N S S	442.5
ПЬ-322	$H_{3}C$ O	434.5

TABLE 7-continued

TABLE /-continued			
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)		
ID	Structure	MW	
IIb-323	HO HO N O N O N O N O N O N O N O N O N	428.5	
IIb-324	$_{\mathrm{HO}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$	377.5	
IIb-325	CH_3	363.5	
IIb-326	$S \longrightarrow S$ F F F	373.4	
IIb-327	H_3C S OH OH	378.5	
IIb-328	CI S OH	376.3	

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-329	HO S HO S HO S HO S HO S HO	353.4

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-333	H_3C O	466.6
IIb-334	HO N S	323.4
IIb-335	HO O N S	367.4
IIb-336	CH ₃ OH OH	321.4
IIb-337	CH ₃ OH OH OH OH OH S OH OH OH	418.3

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-338	$H_{3}C$ $H_{3}C$ OI	367.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($\mathbb{R}^3 = \mathrm{OH}$)	
ID	Structure	MW
IIb-342	O N S S S S S S S S S S S S S S S S S S	457.6
IIb-343	O'N' O'N O'N O'N O'N O'N O'N O'N O'N O'N	338.4
IIb-344		338.4
IIb-345	$H_3C - O$ H_3C O CH_3	383.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-346	HO S S S	307.4
IIb-347	HO N S CH ₃	337.4
IIb-348	Br O N N	491.4
IIb-349	Br O N O N O O O O H	491.4
IIb-350	Br O N O O O O O O O O O O O	491.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-351	H ₃ C O S N HO O	456.5
IIb-352	H ₃ C OH	472.5
IIb-353	$\begin{array}{c} O \\ O \\ S \\ \end{array}$	444.5
IIb-354	$H_{3}C$ O N O O N O	323.4
IIb-355	H_3C OH	323.4
IIb-356	H_3C O	323.4

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-357	OH N O N S	426.5
IIb-358	HO O O S S	351.4
IIb-359	O OH	426.5
IIb-360	$\bigcap_{\mathrm{CH}_3}^{\mathrm{O}} \bigcap_{\mathrm{S}}^{\mathrm{O}} \bigcap_{\mathrm{S}}^$	456.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-361	$\bigcup_{\mathrm{CH}_3}^{\mathrm{O}} \bigcup_{\mathrm{S}}^{\mathrm{O}} \bigcup_{\mathrm{N}}^{\mathrm{O}} \bigcup_{\mathrm{N}}^$	456.5
IIb-362	O S CH ₃	321.4
IIb-363	O OH OH OH	472.5
IIb-364	S O	311.4
IIb-365	$S \longrightarrow S$ O	325.4

	US 9,433,611 I	B2
	1215 TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-366	S CI	327.8
IIb-367	S OH	293.4
IIb-368	O CH_3 H_3C	381.5
IIb-369	H_3C CH_3 S N S	393.5

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R³ = OH)	
ID	Structure	MW
IIb-370	H_3C O	407.5

IIb-373 O O O OH OH
$$CH_3$$

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids (R ³ = OH)	
ID	Structure	MW
IIb-374	H ₃ C OH	381.5
IIb-375	H_3C OH OH	339.4
IIb-376	H ₃ C O	426.5
	H ₃ C S N N HO	
IIb-377	OH OH S OCH ₃	353.4

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
ПЬ-378	CI S N O OH	461.0
IIb-379	$H_{3}C$ N N O	426.5
Шь-380	Cl S N OH HO	462.9
IIb-381	H_3C S N	426.5
IIb-382	O O O O O O O O O O O O O O O O O O O	470.5

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-383	$H_{3}C$ S S O	454.6 H
IIb-384	H_3 COO	353.4
IIb-385	$H_{3}C$ S N O	440.:
IIb-386	H_3C O N S	367.
IIb-387	Cl O O O O O O O O O O O O O O O O O O O	446.

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-388	O CH ₃	337.4

$$\begin{array}{c} \text{IIb-390} \\ \text{H}_{3}\text{C} \\ \text{O} \\ \text{S} \\ \text{HO} \\ \end{array}$$

TABLE 7-continued

ID	Structure	MW
IIb-392	O CH ₃	351.4
Шь-393	H_3C S S O	440.5
IIb-394	CI O O O O O O O O O O O O O O O O O O O	446.9
IIb-395	$H_{3}C$ OH	351.4
IIb-396	N	307.4

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-397	H_3C N	440.5
IIb-398	F S S OH	311.4
IIb-399	OH S S	385.5
IIb-400	OH N S	386.3
IIb-401	CI S N N N N HO	461.0

TABLE 7-continued

	TABLE 7-continued	
	Phenmethylene-Thiazole Alkanoic Acids $(R^3 = OH)$	
ID	Structure	MW
IIb-402	H ₃ C OH	307.4
IIb-403	Cl S N OH OH	462.9
IIb-404	F S HO	325.4
IIb-405	Cl S N N O N O O H	461.0
IIb-406	$S \longrightarrow S$ $N \longrightarrow O$ OH	378.5
IIb-407	HO	343.4

TABLE 7-continued

	Phenmethylene-Thiazole Alkanoic Acids ($R^3 = OH$)	
ID	Structure	MW
IIb-408	OH S N S OCH ₃	373.5
IIb-409	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	446.9
IIb-410	O O O O O O O O O O	430.5
IIb-411	OH O N S	386.3

TABLE 7-continued

	Phenmethylene-Thiazole Alk	zanoic Acids (R ³ = OH)	
ID	Struct	ure	MW
IIb-412	Br O S	OH OH	402.3

1238 TABLE 8-continued

TABLE 8		TABLE 8-continued
Pyridyl And Quinolinyl Methylenyl Alkanoic Acids (R ³ = OH)		Pyridyl And Quinolinyl Methylenyl Alkanoic Acids (R³ = OH)
ID Structure MW	N 5	ID Structure MW
Пb-416 0 294.4	10	IIb-422 S 378.9 S
IIb-417 S S N O N 308.4	20	IIb-423 CH ₃ 388.5
IIb-418 S S 344.		IIb-424 388.5 N N N N N N N N N N N N N N N N N N N
ЮН S S S S S S S S S S S S S S S S S S S	.40 .4	IIb-426 S 392.9 S N HO IIb-426 S 388.5
HO HO 374.4	50	$_{\mathrm{CH}_{3}}^{\mathrm{S}}$
IIb-421 S 374.4		IIb-427 S S 402.5

TABLE 8-continued

1240

TABLE 8-continued

Pyridyl And Quinolinyl Methylenyl Alkanoic Acids (R³ = OH)				Pyridyl And Quinolinyl Methylenyl Alkanoic Acids (R ³ = OH)			
ID	Structure	MW	5	ID		Structure	MW
IIb-428	CI S N O CH ₃	408.9 O	10	IIb-429	CI N O CH ₃	S N	422.9 HO

TABLE 9

	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-430	H ₃ C N S	327.4

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
Пь-433	H_3C O N S S	404.5
IIb-434	S S N OH	418.5
IIb-435	O CH ₃ O N	430.6
Пь-436	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	456.5
IIb-437	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	396.5

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-438	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	434.5
Пь-439	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	449.5
ПЬ-440	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	439.6
IIb-441	$S \longrightarrow S$ S	418.5
IIb-442	O O O O O O O O O O	313.4

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)	
ID	Structure	MW
IIb-443	S S S S S S S S S S	327.4
IIb-444	S S O N OH OH	446.6
Пь-445	CH ₃ N S O	458.6
Пь-446	OCH ₃ OC	494.7
IIb-447	$\begin{array}{c} CH_3 \\ O \\ O \\ S \end{array}$	480.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)	
ID	Structure	MW
Пь-448	CI N N N	476.0
ПЬ-449	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	438.6
ПЬ-450	H ₃ C N O S	395.5
IIb-451	S S S S S S S S S S	458.7
ПЬ-452	S N O N O N O N O N O N O N O N O N O N	410.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)	
ID	Structure	MW
IIb-453	S N N N N N N N N N N N N N N N N N N N	424.6
IIb-454	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array}$	428.6
Пь-455	H ₃ C O N O N S S	418.6
ПЬ-456	N N N S S S S S S S S S S S S S S S S S	420.6
IIb-457	S N	487.6

TABLE 9-continued

Tri .	TABLE 9-continued	
ID	ophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—) Structure	MW
Пь-458	N= CH ₃ C N N N N N N N N N N N N N N N N N N N	457.6
IIb-459	HO H_3C CH_3 CH_3	398.6
IIb-460	O N H ₃ C	380.6
Пь-461	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	412.6
Пь-462	S F F	456.5

1253
TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)	
ID	Structure	MW
IIb-463	HO N S S S S S S S S S S S S S S S S S S	432.6
ПЬ-464	S N OH OH	432.6
ПЬ-465	$\bigcup_{N} \bigcup_{N} \bigcup_{S} \bigcup_{S$	472.7
IIb-466	$\bigcup_{O} \bigcup_{O} \bigcup_{O$	442.5
IIb-467	S N N N N N N N N N N N N N N N N N N N	416.5
IIb-468		430.5

TABLE 9-continued

	TABLE 9-continued	
T	hiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-469	$\bigcup_{S}^{O} \bigvee_{S}^{N} \bigvee_{O}^{N}$	388.5
ПЬ-470	ON NOH	446.6
IIb-471	H_3C H_3C O	370.5
Пь-472	$O \longrightarrow OH$ $O \longrightarrow N$ $O \longrightarrow$	418.5
Шь-473		352.5

1257
TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)	
ID	Structure	MW
IIb-474		368.5
IIb-475	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	381.5
IIb-476	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	383.5
IIb-477	S N	379.5
Пр-478		375.5
IIb-479		375.5
ПЬ-480	N	432.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-481	CH ₃	341.5
IIb-482	HO N N S	404.5
IIb-483	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	418.6
IIb-484	N-OH OH	432.5
ПЬ-485	$\begin{array}{c} Cl \\ N \\ \\ S \\ \\ S \\ \end{array}$	441.0

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
Пь-486	S S S S S S S S S S S S S S S S S S S	494.7
IIb-487	O N N N CH ₃	410.6
IIb-488	S N Br	467.4
IIb-489	$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \\ \\$	381.5
IIb-490	S O O N O N O O N O O N O O O O O O O O	439.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
Пь-491		380.6
Пь-492	S O N CH ₃	380.6
IIb-493	S O N CH ₃	416.6
ПЬ-494	S S S S CH_3	354.5
IIb-495	S S S S CH ₃	384.5
Пь-496	S S S S S S S S S S S S S S S S S S S	380.6

TABLE 9-continued

	TABLE 9-continued	
T	hiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
IIb-497	O N H ₂ N O S S S S	477.6
Пь-498		445.6
Пь-499	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	416.6
ПЬ-500	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	406.5
ПЬ-501	S S S S S S S S S S	439.0
Пь-502	$ \begin{array}{c} $	397.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-503		457.6
IIb-504	S S CH_3	416.6
IIb-505	N H_3C CH_3 CH_3	430.6
IIb-506	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	432.5
ПЬ-507	$ \begin{array}{c} \downarrow \\ S \end{array} $ $ \begin{array}{c} \downarrow \\ S \end{array} $ $ \begin{array}{c} \downarrow \\ S \end{array} $	406.5
IIb-508	N N CH ₃	424.6
IIb-509		478.7

TABLE 9-continued

	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-510	S H ₃ C	402.6
IIb-511	S S S S CH_3	402.6
IIb-512	S S S	416.6
Шь-513	S S S H_3C	452.6
IIb-514	S S S S S S S S S S S S S S S S S S S	395.5
IIb-515		389.5

TABLE 9-continued

	TABLE 9-continued	
Т	hiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-516		446.7
IIb-517	S HOOO	434.5
IIb-518	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array}$	430.6
Пь-519		416.6
Пь-520	S S N O O CH ₃	444.6
IIb-521	S N O O O O O O O O O O O O O O O O O O	448.5

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-522	S S N N N N S O	444.6
Пь-523	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	441.6
IIb-524	S S S	434.5
Пь-525	O S O O S S O O S S O O O O O O O O O O	430.6
Пь-526		414.5
Пь-527	S N O N O O O O O O O O O O O O O O O O	418.6

TABLE 9-continued

	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
Пь-528		406.6
Пь-529	H_3C N CI S	407.0
ПЬ-530		428.6
Пь-531	S S S S	392.5
Пь-532	F O N S	392.5

1277

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-533	Cl	424.9
	O OH	
	· ·	
	N N	
	S S S S	
IIb-534		414.6
	N	
	s	
	`s	
IIb-535		480.7
	o, >=<	
) N S	
	's	
	S S	
IIb-536	^ / ⁰	421.0
	N	
	İş İş 🔍	
	"s — o	
	O, H	
	CI H ₃ C	
IIb-537	<i>-</i> .	431.6
110-337		431.0
	N	
	S S	
	`s	
IIb-538	0 0	409.0
	N CI	
	S S	
	"S	

TABLE 9-continued

	TABLE 9-continued	
T	hiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-539	O OH OH OH	448.5
Пь-540	H ₃ C O O O O O O O O O O O O O O O O O O O	453.6
IIb-541	Br O N O O	467.4
Пь-542	CI N S S S	423.0
IIb-543	O H ₃ C OH	370.5

1281

TABLE 9-continued

	TABLE 9-continued	
Thiop	henylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH	<u>—) </u>
ID	Structure	MW
IIb-544	O N OH	432.6
ПЬ-545	H ₃ C N N	402.6
ПЬ-546	S CH ₃	416.6
Пь-547	S S S S S S S S S S S S S S S S S S S	299.4

TABLE 9-continued

	TABLE 9-continued	
-	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-548	N S S S S S S S S S S S S S S S S S S S	374.5
IIb-549	$H_{3}C$ N S	418.6
ПЬ-550	S S S S S S S S S S S S S S S S S S S	464.6
ПЬ-551	H_3C N S S S	341.5

1285

TABLE 9-continued

Thioph	nenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And R	NH—)
ID	Structure	MW
Пь-552	H_3C-O S	404.5
Пь-553	H_3C N S	388.5
Пь-554	H_3C-N CH_3 N CIH	407.0
ПЬ-555	H ₃ C S	313.4

1287

TABLE 9-continued

Thiophen	JABLE 9-continued ylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure Structure	MW
IIb-556	$H_{3}C$ O S	388.5
IIb-557	H_3C N S	388.5
ПЬ-558	CH ₃ N S	404.5
Пь-559	H ₃ C N S	369.5

TABLE 9-continued

Т	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-560	H_3C	355.5

TABLE 9-continued

	TABLE 9-continued	
Т	'hiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
IIb-564		425.6
Пь-565	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	452.6
Пь-566	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	354.5
Пь-567	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	395.5
IIb-568		394.6

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)	
ID	Structure	MW
Пь-569	S S N	402.6
IIb-570	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	416.5
Пь-571	$\begin{array}{c} F \\ \hline \\ \hline \\ N \\ \hline \\ S \\ S$	442.5
ПЬ-572	$\bigcup_{S} \bigcup_{S} \bigcup_{N} \bigcup_{HO} \bigcup_{OH}$	448.5
Пь-573	S N O	313.4

TABLE 9-continued

	IABLE 9-continued	
Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)		
ID	Structure	MW
Пь-574	O CH ₃	418.6
IIb-575		366.5
ПЬ-576	S O N O N O N O N O N O N O N O N O N O	382.5
Пь-577	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	384.5
IIb-578	CH ₃ O N S S S S S S S S S S S S S S S S S S	408.6

TABLE 9-continued

	TABLE 9-continued				
T	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)				
ID	Structure	MW			
IIb-579	S OH N N N N N N N N N N N N N N N N N N	432.6			
ПЬ-580	S S S S S S S S S S	471.6			
IIb-581		366.5			
Пь-582	S O OH	418.6			
Пь-583	S S N N N N N N N N N N N N N N N N N N	418.5			
Пь-584	N N N N N N N N N N	421.0			

TABLE 9-continued

TABLE 9-continued					
	Thiophenylmethylenyl Alkanoic Acids And Amides ($R^3 = O$ — And NH—)				
ID	Structure	MW			
Пь-585		380.6			
Пь-586	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	327.4			
Пь-587		402.6			
IIb-588	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	389.5			
Пь-589	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	410.6			
590	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	453.4			

TABLE 9-continued

Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)			
		MW	
ID IIb-591	Structure O S S N O O O O O O O O O O O O O O O	MW 390.5	
IIb-592	OH OH	404.5	
IIb-593	S S N N HO	390.5	
IIb-594	S S S S S S S S S S	369.5	
Пь-595		366.5	
ПЬ-596	$\bigcup_{S} \bigcup_{S} \bigcup_{N}	394.6	

TABLE 9-continued

	TABLE 9-continued			
	Thiophenylmethylenyl Alkanoic Acids And Amides ($\mathbb{R}^3 = O$ — And NH—)			
ID	Structure	MW		
Пь-597	S S N H_3C CH_3	444.6		
Пь-598	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	409.6		
IIb-599	S S N O N O O O O O O O O O O O O O O O	390.5		
Пь-600	S S S N O	418.6		
ПЬ-601	S S N N N	445.6		
IIb-602	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	368.5		

1305

TABLE 9-continued

	TABLE 9-continued			
Thiophenylmethylenyl Alkanoic Acids And Amides (R³ = O— And NH—)				
ID	Structure	MW		
IIb-603	O OH OH S S H ₃ C	313.4		
IIb-604	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	438.6		
IIb-605	,o	402.6		
IIb-606	S S N N H_3C H_3C	393.5		
116-000	O N N S S S S S S S S S S S S S S S S S	393.3		
ПЬ-607	S N N N N N N N N N N	395.6		

1307

TABLE 9-continued

	TABLE 9-continued	
	Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)	
ID	Structure	MW
IIb-608		424.6
IIb-609	CH₃	459.6
	S S S N N N N N N N N N N N N N N N N N	
IIb-610		491.7
	NH_2	
IIb-611		383.6
	S O CH ₃	
IIb-612	·	432.5
	OH S S S	

TABLE 9-continued

	TABLE 9-continued			
Thiophenylmethylenyl Alkanoic Acids And Amides (R ³ = O— And NH—)				
ID	Structure	MW		
Пь-613		471.6		
IIb-614	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	452.6		
IIb-615	H_3C N N N N N N N N N	409.6		
IIb-616		407.0		
	H ₃ C—N: H CH ₃ S S	157.0		
Пь-617	CI- H ₃ C	421.0		

	TABLE 10			TABLE 10-continued
5-[[2,5-Dimeth	yl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	_	5-[[2,5-Dime	thyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5	ID	Structure
IIc-1	СО2Н		IIc-4	CI
	Me Ne Me	10		
	CH	15		CH Me
		20		N Me
	Cl	25	IIc-5	CI
IIc-2	Cl	30		
	O N O CH	35		Me CH
	Me N	40		Me N Me
	Me	45	IIc-6	Br
He-3	ĊO₂H	50		MeO—C Me
	Me N Me	55		CH
	O CH	60		S N O
	Ph	65		

TABLE TO-Continued			TABLE 10-continued
5-[[2,5-Dimethyl-	-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		yl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5 ID	Structure
IIc-7	OMe	He-10 10	N
	O N O CH	15	Me N Me
	Me N Me	20	O N S
	NO_2	25 IIc-11	CN
IIc-8	OMe	30	Me N Me
	O N O CH	35	CH
	Me N	40	O N S
	Me N	IIc-12 45	Me
IIc-9	Me N	50	Me Me
	Me N Me	55	O CH S
	O S	60	
	Ph	65	 Cl

5-[[2,5-Dimethyl-11	H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolid		1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5 ID	Structure
		IIc-15	Cl I
Ic-13	Et	10	
	Me N Me	15	Me N Me
		20	CH
	 CH 	20	o s
	S	25	N.—
		23	
		30	CI
	CI		
		35	
		40	
		IIc-16	Me
c-14		45	
	Me Me		
	Me N Me	50	Me N Me
	CH		CH
	o s	55	o s
	, N		N-
		60	
	CI		CI
		65	

	TABLE 10-continued	_		TABLE 10-continued
5-[[2,5-Dimethy	yl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	_	5-[[2,5-Dimethy	l-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5 –	ID	Structure
IIc-17	Br	10	IIe-19	F
	Me Ne Me	15		Me N Me
	O CH	20		O S S
		25		
	CI	30		l Cl
		35		
		40		
IIc-18	MeO—C	45	Hc-20	O_2N
	Me Me	50		Me N Me
	O S S	55		O S S
		60		O O
	Cl			Cl

5-[[2,5-Dimethyl-1H-Pyr				
5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones			5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-21	NO ₂	IIc-24 10	Ph	
	Me Me	20	Me Me	
	S S	25	O N S	
Пс-22	CI	IIc-25 30	Et	
	Me Me	35	Me N Me	
	O CH S	40	O N S	
	Ph	43		
Пс-23	OMe	He-26	n-Bu	
	Me N Me	55	Me Me	
	O S S Ph	60	O N S	

1322
TABLE 10-continued

TABLE 10-continued		IABLE 10-continued		
5-[[2,5-Dimethyl-	1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	5-[[2,5-]	Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-27	OAc	IIc-31	Ph J	
		10	Ph N Ph	
	Me N Me		CH 	
		15	° S	
	O ₂ CH		N-VO	
	N S	20 IIc-32	o 	
	Ph O	25	Ö—OMe	
IIc-28	Me	23		
	Me N Me	30	Me N Me	
	CH	35	O CH	
	O S		N——	
	Ph	40	Ph ' ' Ò Br	
Ic-29	.S. Me	IIc-33	, and the second	
N-	CH	-O 45		
Ph	Me Me		CH ₂	
Ic-30	MeO—C	50		
	Me N Me	55	Me N Me	
	O CH	60	O CH	
	N		N——	
	Ph' O	65	Ph' O	

5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		IABLE 10-continued		
		5-[[2,5-Dimethy	l-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-34	СО₂Н	IIc-37	F	
		10		
	Me N Me	15	CH ₂	
	O CH	20	Me N Me	
	Ph	25	CH CH	
IIc-35	O_2N	30	O N S	
	Me N Me	IIc-38 35	MeO	
	O CH	40	Me Me	
	Ph O	45	O N	
IIc-36	Me Me C—OEt	50 IIc-39	Ph' 'O	
	Me N Me	55	Et Ne Me	
	O	60	O	
	Ph	65	Ph	

TABLE TO COMMICCE		_	17 IDEA TO COMMITTEE
	I-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	5	yl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	ID	Structure
Пс-40	NO ₂	Hc-43	
	Me N Me	15 20	Me Ne CH
	Ph S	25	O N S S O O
IIc-41	Me Me	IIc-44 30	Br
	Me Ne CH	35 40	Ph Ph CH Os
	Ph	45	S N Ph
Пс-42	CI	IIc-45 50	F Me Me
	Me N Me	60	CH S
	Ph S	65	Ph O

TABLE 10-continued		TABLE 10-continued		
5-[[2,5-Dimethyl	-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		l-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-46	F	IIc-49 10	t-Bu	
	Me N Me	15	Me N Me	
	O N S	20	O N S	
IIc-47	CI	30 He-50	I	
	Cl Me Me	35	Me N Me	
	O S S S Ph	40	O S S Ph	
IIc-48	$_{1}^{\mathrm{NO}_{2}}$	45 50 IIc-51	CI	
	Cl Me Me	55	Me N Me	
	CH	60	CH	
	N N O	65	Ph	

TABLE 10-continued		TABLE 10-continued		
5-[[2,5-Dimethy	vl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		yl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-52	O Ph N O	IIc-55	HO ₂ C Cl	
	Me Me	15	Me N Me	
		20	O N S	
		25		
IIc-53	HO ₂ C	IIc-56 30	O C — OEt	
	Me Ne Me	35	Ph Ph	
	O N S	40	O CH	
		45	Ph	
IIc-54	Me	50 Hc-57	Br	
	Me N Me	55	Me N Me	
	O CH S N	60	O S N	
	Ph	65	Ph' O	

TABLE 10-continued		TABLE 10-continued		
5-[[2,5-Dime	5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		5-[[2,5-Dimet	hyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5	ID	Structure
Hc-58	MeO—C		IIc-61	Me Br
	Me N Me	15		Me Me
И. 50	Ph O	20		O N S
IIc-59	H ₂ C=CH-CH ₂ -O	25		
	Me Ne Me	30	IIc-62	O COEt
	O CH	35		Me N Me
	Ph O	40		CH
IIc-60	$_{ m NC}$ $_{ m CH_2}$	45		Ph S
		50	IIc-63	
	Me N Me	55		Me Me Me
	O CH S	60		O CH
	Ph	65		Ph

TABLE 10-continued		- IABLE 10-continued		
	-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		
ID IIc-64	Structure CI	_ 5 ID	Structure	
110-04	Š			
		Hc-67	CI	
		10	Me	
	$\overset{\dot{\mathrm{CH}}_{2}}{\bigvee}$		Me N Me	
	Ů	15		
			I CH II	
		20	° s	
	Me N Me Me	20	N	
	\\/		Ph' O	
	o_ CH	25 IIc-68		
	S			
	Ph	30	F CH ₂	
IIc-65	Me 		O O	
		35		
	Me N Me		Me N Me	
		40		
	 CH 		CH	
	° s	45	o s	
	N		N	
IIc-66	Ph' O		Ph' O	
		50 IIc-69	HO ₂ C	
	Ph N Ph	55	Me Me	
	СН	60	CH	
	0	00	o s	
	$\sqrt[N]{}$		N	
	Ph O	65	Ph O	

5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones			IABLE 10-continued		
		_	5-[[2,5-Dimethy	l-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID		Structure	
IIc-70	NHAc	IIc-	-73	OEt 	
		10			
	Me N Me	15		Me N Me	
	O_N_	20		O S	
IIc-71	Ph' 'ò NO ₂	25		Ph	
		IIc-	-74	Me	
		35		Me N Me	
	Me N Me	40		O S	
	O N S	45		Ph	
IIc-72	MeO—C	He-	-75	NO ₂	
	Me Me	55		Me N Me	
	OSS	60		O CH S	
	Ph	65		Ph	

1338

5-[[2,5-Dimethy	vl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	5-[[2,5	-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones
ID	Structure	5 ID	Structure
He-76	Me Me	— IIc-79	$\bigcap_{Me} \bigcap_{O} \bigcap_{Ph} \bigcap_{Ph} \bigcap_{O} \bigcap_{Ph} \bigcap_{O} \bigcap_{Ph} \bigcap_{O} \bigcap_{O} \bigcap_{Ph} \bigcap_{O}
	Me N Me	15 IIc-80	MeO—C
	O N S	20	Me N Me
IIc-77	F	25	O CH
	Me Me	30 IIc-81	Ph O Me
	O N O	35 40	Me N Me
Пс-78	NO ₂	45	O N S S
		Hc-82	CI
	Me Me	55	Ph Ph
	O_N_S	60	O S
	Ph'	65	$_{\mathrm{Ph}}$ $_{\mathrm{O}}$

TABLE 10 commucu		TABLE 10 commune		
5-[[2,5-Dimethyl-1	H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		ethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5 ID	Structure	
IIc-83	CI Ne Me	Hc-86	CI	
	CH	15	Me Ne CH	
	O S S Ph	20	O N S	
IIc-84	CI	25		
	CI CH_2	He-87	$_{ m HO_2C}$	
		35	Me N Me	
	Me Ne Me	40	O N S	
	o s	45		
	Ph	IIc-88	0	
IIc-85	Cl	50	MeO—C	
	Me Me	55	Me N Me	
	O S	60	O S N	
	Ph	65	Ph	

TABLE 10-continued		_	TABLE 10-continued		
5-[[2,5-Dimethyl-	-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	5-[[2,5-Dimethyl-1		nyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones	
ID	Structure	5	ID	Structure	
	Cl	10	IIc-93	CI	
	Me N Me	15		Me Me	
	O S S Ph	20		O N S	
IIc-90	Cl	25	IIc-94	CI	
	Me N Me	30		CH ₂	
	O S S	35		Me N Me	
IIc-91	Ph' 'O	40		O CH	
Ph	N Me	45		N——O	
IIc-92	i-Pr	50	He-95	OH	
	Me N Me	55		Me N Me	
	O S	60		O S	
	Ph' O	65		Ph	

5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		TABLE 10-continued			
		5-[[2,5-Dimet	Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		
ID	Structure	5 ID	Structure		
Hc-96	EtO—C	IIc-99	O C—OMe		
	Me N Me	15	Me Me CH		
	O N S	20	O N S		
		IIc-100	$_{ m NO_2}$		
IIc-97	NEt ₂	30	O_2N		
	Me N Me	35			
	O N S	40	Me N Me CH		
IIc-98	CO₂H 	45 50	O N S		
	Me N Me	IIc-101 55	Br Me Me		
	CH	60	CH		
	Ph O	65	O N S		

5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		TABLE 10-continued			
		- <u></u>	nethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		
ID	Structure	5 ID	Structure		
He-102	Br	Hc-105	NO ₂		
	Me Me CH	15	MeO Me		
	O N S S Ph	20	O S S Ph		
		20			
IIc-103	Me	30 IIc-106	HO ₂ C		
	Me N Me	35	CI Me Me		
	O S	40	O CH		
	РЫ О	45	N——NO		
IIc-104	NMe ₂	50			
	Me N Me	Hc-107	Me N Me		
	O S	60	O CH		
	Ph	65	Ph		

TABLE 10-continued		TABLE 10-continued		
5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		5-[[2,5-Dimethyl-1H-Pyrrol-3-Yl]Methylene]-2,4-Thiazolidinediones		
D	Structure	5 ID	Structure	
c-108	Br 	IIc-111	O - - 	
	F			
	Me Ne	15	Me N Me	
	O CH	20	CH	
	Ph	25	N——S Ph	
		IIc-112	O_2N	
c-109		30		
	Me N Me	35	Me N Me CH	
	O S	40	O N S	
	Ph	IIc-113 45	Me	
c-110	NO_2	50	Me N Me	
	MeO N Me	55	O S	
	O CH	A number of this in	representative oxazoles and thiazole derivention, as listed below in Table 11, w	

tives of this invention, as listed below in Table 11, were tested for their inhibitory activity and IC₅₀ were calculated.

For the purpose of Table 11 below, activity of each compound is determined using the luciferase assay method in *Drosophila* Clone 8 cells.

TABLE 11 IC ₅₀ Values of Exemplary Compounds				
				ID
IIa-66	C6	NH S NH	380.51	3.51
Ha-333	C3	HNO	394.54	4.18
IIa-719	C1	HNO	330.45	1.58

1351

TABLE 11-continued

TABLE 11-continued					
	IC ₅₀ Values of Exemplary Compounds				
ID	C#*	Structure	MW	IC50 (μM)	
IIa-722	C13	HN S	316.43	1259.72	
IIa-2102	C8		392.52	1.10	
IIb-143	C5	O—CH ₃ O—CH ₃ O HO	367.4	3.06	
IIb-432	C10	S S N N N N N N N N N N N N N N N N N N	404.5	4.76	

TABLE 11-continued

IC ₅₀ Values of Exemplary Compounds					
ID	C#*	Structure	MW	IC50 (μM)	
IIc-3	C14		375.4	3.24	

*see FIG.s 3-12

From the foregoing description, various modifications and changes in the compositions and methods of this invention will occur to those skilled in the art. All such modifications coming within the scope of the appended claims are intended to be included therein.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

At least some of the chemical names of compounds of the invention as given and set forth in this application, may have been generated on an automated basis by use of a commercially available chemical naming software program, and have not been independently verified. Representative programs performing this function include the Lexichem naming tool sold by Open Eye Software, Inc. and the Autonom Software tool sold by MDL, Inc. In the instance where the indicated chemical name and the depicted structure differ, the depicted structure will control.

Chemical structures shown herein were prepared using 40 either ChemDraw® or ISIS® /DRAW. Any open valency appearing on a carbon, oxygen or nitrogen atom in the structures herein indicates the presence of a hydrogen atom. Where a chiral center exists in a structure but no specific stereochemistry is shown for the chiral center, both 45 enantiomers associated with the chiral structure are encompassed by the structure.

What is claimed is:

1. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound according to formula I:

$$\begin{array}{ccc} & & & I \\ A & & & \\ O & & & 55 \end{array}$$

wherein A is A^1 ; A^1 is

$$(R^{4})_{n} = R^{2a} R^{2b} R^{2c} R^{2d};$$

$$R^{1} = R^{2b} R^{2c} R^{2d};$$

$$R^{2a} R^{2b} R^{2c} R^{2d};$$

$$R^{2a} R^{2b} R^{2c} R^{2d};$$

$$R^{2a} R^{2b} R^{2c} R^{2d};$$

x is 1;

20

 L^1 is S, SO or SO_2 ;

m1 is 1, 2 or 3; n is 1, 2, 3, 4 or 5;

each R^1 , R^{2a} , R^{2b} , R^{2c} , and R^{2d} is independently selected from hydrogen, halo, and substituted or unsubstituted C_1 - C_6 alkyl;

 R^3 is $NR^{3a}R^{3b}$; and

one of R^{3a} and R^{3b} is substituted or unsubstituted alkyl, substituted or unsubstituted benzyl, substituted or unsubstituted phenethyl, cycloheptyl, cyclohexyl, cyclohexyl substituted with methyl or dimethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted or unsubstituted or unsubstituted cyclopropyl; and the other is H or substituted or unsubstituted alkyl; or NR^{3a}R^{3b} is:

and wherein R^{3c} is H or alkyl;

each R⁴ is independently selected from alkyl, substituted alkyl, acyl, substituted acyl, substituted or unsubstituted acylamino, substituted or unsubstituted alkylamino, substituted or unsubstituted alkythio, substituted or unsubstituted alkoxycarbonyl, substituted alkoxycarbonyl, substituted alkylarylamino, arylalkyloxy, substituted arylalkyloxy, amino, aryl, substituted aryl, arylalkyl, substi-

tuted or unsubstituted sulfonyl, substituted or unsubstituted sulfanyl, substituted or unsubstituted sulfanyl, substituted or unsubstituted aminosulfonyl, substituted or unsubstituted arylsulfonyl, azido, carboxy, substituted or unsubstituted carbamoyl, cyano, substituted or unsubstituted cycloalkyl, substituted or unsubstituted substituted or unsubstituted carbamoyl, cyano, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloheteroalkyl, substituted or unsubstituted dialkylamino, heteroaryloxy, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroalkyl, hydroxy, nitro, and thiol; and

a pharmaceutically acceptable salt, solvate or prodrug thereof;

and stereoisomers, isotopic variants and tautomers thereof.

2. The pharmaceutical composition of claim 1 wherein the carrier is a parenteral carrier, oral or topical carrier.

3. The pharmaceutical composition according to claim 1, wherein the compound is according to formula Ha:

$$(\mathbb{R}^4)_n \qquad \mathbb{R}^{2a} \quad \mathbb{R}^{2b} \qquad \mathbb{R}^{2c} \quad \mathbb{R}^{2d}$$
 IIa

and wherein L 1 , m1 , n, R 1 , R 2a , R 2b , R 2c , R 2d , R 3 , and R 4 , $\ _{30}$ are as in claim 1.

4. The pharmaceutical composition according to claim **3**, wherein R¹ is H, halo, or substituted or unsubstituted C₁-C₆ alkyl.

5. The pharmaceutical composition according to claim 3, $_{35}$ wherein R^3 is $NR^{3a}R^{3b}$; and; one of R^{3a} and R^{3b} is substituted or unsubstituted alkyl,

substituted or unsubstituted benzyl, substituted or unsubstituted phenethyl, cycloheptyl, cyclohexyl, cyclohexyl substituted with methyl or dimethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted cyclopentyl, or substituted or unsubstituted cyclopropyl; and the other is H.

6. The pharmaceutical composition according to claim 3, wherein R³ is NR^{3a}R^{3b}; and

 $NR^{3a}R^{3b}$ is:

and wherein R^{3c} is H or alkyl.

1356

7. The pharmaceutical composition according to claim 1, wherein the compound is according to formula IVa:

$$(\mathbb{R}^4)_n$$
 IVa
$$(\mathbb{R}^4)_n$$
 NR $^{3a}\mathbb{R}^{3b}$;

wherein n, and R⁴ are as in claim 1; and

one of R^{3a} and R^{3b} is substituted or unsubstituted alkyl, substituted or unsubstituted benzyl, substituted or unsubstituted phenethyl, cycloheptyl, cyclohexyl, cyclohexyl substituted with methyl or dimethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted cycloputyl, or substituted or unsubstituted cyclopropyl; and the other is H; or

 $NR^{3a}R^{3b}$ is:

20

25

45

and wherein R^{3c} is H or alkyl.

8. The pharmaceutical composition according to claim 7, wherein n is 1; and R⁴ is alkyl, alkoxy, or haloalkyl.

9. The pharmaceutical composition according to claim 7, wherein one of R^{3a} and R^{3b} is substituted or unsubstituted benzyl, substituted or unsubstituted phenethyl, cyclohexyl, cyclohexyl substituted with methyl or dimethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted or unsubstituted cyclopropyl; and the other is H.

10. The pharmaceutical composition according to claim 1, wherein the compound is according to formula VIIa, VIIb, VIIc or VIId:

60 VIIa
N
 N 25

35

-continued

Et $\stackrel{N}{\longrightarrow}_{Me}$ $\stackrel{H}{\longrightarrow}_{R^{3b}}$, $\stackrel{VIIb}{\longrightarrow}_{R^{3b}}$

MeS $\stackrel{N}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{N}{\longrightarrow}$ $$\begin{array}{c} \text{VIId} \\ \text{MeO} \\ \hline \\ \text{O} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \end{array} \begin{array}{c} \text{VIId} \\ \text{R}^{3b}. \end{array} \begin{array}{c} 20 \\ \text{N} \\ \text{O} \\ \end{array}$$

wherein R^{3b} is substituted or unsubstituted alkyl, benzyl, substituted or unsubstituted phenethyl, cyclohexyl, cyclohexyl substituted with methyl or dimethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted cyclobutyl, or substituted or unsubstituted cyclopropyl.

11. The pharmaceutical composition according to claim 1, wherein the compound is according to formula VIIIa, VIIIb, VIIIc, or VIIId:

Me VIIIa VIIIa VIIIIa VIIIIa 40 VIIIIb 45

$$Et \longrightarrow N \longrightarrow S \longrightarrow N \xrightarrow{Cy},$$

$$50$$

$$\begin{array}{c} \text{VIIIc} \\ \text{MeS} \\ \hline \\ \text{Me} \end{array}$$

wherein Cy is

and wherein R^{3c} is H or alkyl.

 $12. \ \mbox{The pharmaceutical composition according to claim 1,}$ wherein the compound is according to formula XIIa, XIIb, XIIc or XIId:

XIIa

-continued

13. The pharmaceutical composition according to claim 1, wherein the compound is according to formula XIIIa, XIIIb, XIIIc or XIIId:

$$\begin{array}{c} XIIIa \\ 20 \\ \\ Me \end{array}$$

XIIIb

14. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effec- 65 tive amount of a compound, wherein the compound is according to formula XIa, XIb, XIc or XId:

15. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effec-30 tive amount of a compound, wherein the compound is selected from Table 1.

16. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound, wherein the compound is 35 selected from Table 2.

17. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound, wherein the compound is selected from Table 4.

18. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound according to formula I:

$$A = \prod_{i=1}^{k} R^3$$

Ι

wherein A is A^1 ;

$$(R^4)_n = (R^4)_n + (R^4$$

 A^1 is

40

45

50

x is 1;

 L^1 is S, SO or SO₂;

m1 is 1, 2 or 3; n is 1, 2, 3, 4 or 5;

each R¹, R^{2a}, R^{2b}, R^{2c}, and R^{2d} is independently selected from hydrogen, halo, and substituted or unsubstituted C_1 - C_6 alkyl; R^3 is $NR^{3a}R^{3b}$; and

one of R^{3a} and R^{3b} is substituted or unsubstituted alkyl, substituted or unsubstituted benzyl, substituted or unsubstituted phenethyl, substituted or unsubstituted cyclopentyl, substituted or unsubstituted cyclobutyl, or

5

10

15

20

substituted or unsubstituted cyclopropyl; and the other is H or substituted or unsubstituted alkyl; or $NR^{3a}R^{3b}$ is:

and wherein R^{3c} is H or alkyl;

each R4 is independently selected from alkyl, substituted alkyl, acyl, substituted acyl, substituted or unsubstituted acylamino, substituted or unsubstituted alkylamino, substituted or unsubstituted alkythio, substituted or unsubstituted alkoxy, alkoxycarbonyl, substituted alkoxycarbonyl, substituted or unsubstituted alkylarylamino, arylalkyloxy, substituted arylalkyloxy, amino, aryl, substituted aryl, arylalkyl, substituted or unsubstituted sulfonyl, substituted or unsubstituted sulfinyl, substituted or unsubstituted sulfanyl, substituted or unsubstituted aminosulfonyl, substituted or unsubstituted arylsulfonyl, azido, carboxy, substituted or unsubstituted carbamoyl, cyano, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloheteroalkyl, substituted or unsubstituted dialkylamino, heteroaryloxy, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroalkyl, hydroxy, nitro, and thiol; and

a pharmaceutically acceptable salt, solvate or prodrug thereof;

and stereoisomers, isotopic variants and tautomers thereof.

* * * * *